## Foundations of Geometry

## Chapter 2. Euclidean Geometry

2.4. The Measurements of Distance—Proofs of Theorems



Foundations of Geometry October 30, 2021 1 / 3

Theorem 2.4.1

## Theorem 2.4.1

**Theorem 2.4.1.** If P, Q, and R are points such that for some unit pair,  $\alpha = \{A, A'\}$ ,  $m_{\alpha}(P, Q) + m_{\alpha}(Q, R) = m_{\alpha}(P, R)$  then for any other unit pair  $\beta = \{B, B'\}$ , we have  $m_{\beta}(P, Q) + m_{\beta}(Q, R) = m_{\beta}(P, R)$ .

**Proof.** By Postulate 9 we can relate the distances between points relative to the different unit pairs as

$$m_{\alpha}(P,Q) = m_{\alpha}(B,B')m_{\beta}(P,Q),$$
  
 $m_{\alpha}(Q,E) = m_{\alpha}(B,B')m_{\beta}(Q,R),$   
 $m_{\alpha}(P,R) = m_{\alpha}(B,B')m_{\beta}(P,R).$ 

Substituting these relationships into  $m_{\alpha}(P,Q)+m_{\alpha}(Q,R)=m_{\alpha}(P,R)$  gives:  $m_{\alpha}(B,B')m_{\beta}(P,Q)+m_{\alpha}(B,B')m_{\beta}(Q,R)=m_{\alpha}(B,B')m_{\beta}(P,R)$ . Now  $m_{\alpha}(B,B')\neq 0$  since, by the definition of "unit pair,"  $B\neq B'$ . So dividing through by  $m_{\alpha}(B,B')$ , the previous equation yields

$$m_{\beta}(P,Q) + m_{\beta}(Q,R) = m_{\beta}(P,R),$$

as claimed.

Foundations of Geometry October 30, 2021 3 /