Foundations of Geometry

Chapter 2. Euclidean Geometry

2.4. The Measurements of Distance—Proofs of Theorems

Table of contents

(1) Theorem 2.4.1

Theorem 2.4.1

Theorem 2.4.1. If P, Q, and R are points such that for some unit pair, $\alpha=\left\{A, A^{\prime}\right\}, m_{\alpha}(P, Q)+m_{\alpha}(Q, R)=m_{\alpha}(P, R)$ then for any other unit pair $\beta=\left\{B, B^{\prime}\right\}$, we have $m_{\beta}(P, Q)+m_{\beta}(Q, R)=m_{\beta}(P, R)$.
Proof. By Postulate 9 we can relate the distances between points relative to the different unit pairs as

$$
\begin{aligned}
& m_{\alpha}(P, Q)=m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(P, Q), \\
& m_{\alpha}(Q, E)=m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(Q, R), \\
& m_{\alpha}(P, R)=m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(P, R) .
\end{aligned}
$$

Substituting these relationships into $m_{\alpha}(P, Q)+m_{\alpha}(Q, R)=m_{\alpha}(P, R)$ gives: $m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(P, Q)+m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(Q, R)=m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(P, R)$.

Theorem 2.4.1

Theorem 2.4.1. If P, Q, and R are points such that for some unit pair, $\alpha=\left\{A, A^{\prime}\right\}, m_{\alpha}(P, Q)+m_{\alpha}(Q, R)=m_{\alpha}(P, R)$ then for any other unit pair $\beta=\left\{B, B^{\prime}\right\}$, we have $m_{\beta}(P, Q)+m_{\beta}(Q, R)=m_{\beta}(P, R)$.
Proof. By Postulate 9 we can relate the distances between points relative to the different unit pairs as

$$
\begin{aligned}
& m_{\alpha}(P, Q)=m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(P, Q), \\
& m_{\alpha}(Q, E)=m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(Q, R), \\
& m_{\alpha}(P, R)=m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(P, R) .
\end{aligned}
$$

Substituting these relationships into $m_{\alpha}(P, Q)+m_{\alpha}(Q, R)=m_{\alpha}(P, R)$ gives: $m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(P, Q)+m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(Q, R)=m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(P, R)$. Now $m_{\alpha}\left(B, B^{\prime}\right) \neq 0$ since, by the definition of "unit pair," $B \neq B^{\prime}$. So dividing through by $m_{\alpha}\left(B, B^{\prime}\right)$, the previous equation yields
$m_{\beta}(P, Q)+m_{\beta}(Q, R)=m_{\beta}(P, R)$,

Theorem 2.4.1

Theorem 2.4.1. If P, Q, and R are points such that for some unit pair, $\alpha=\left\{A, A^{\prime}\right\}, m_{\alpha}(P, Q)+m_{\alpha}(Q, R)=m_{\alpha}(P, R)$ then for any other unit pair $\beta=\left\{B, B^{\prime}\right\}$, we have $m_{\beta}(P, Q)+m_{\beta}(Q, R)=m_{\beta}(P, R)$.
Proof. By Postulate 9 we can relate the distances between points relative to the different unit pairs as

$$
\begin{aligned}
& m_{\alpha}(P, Q)=m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(P, Q), \\
& m_{\alpha}(Q, E)=m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(Q, R), \\
& m_{\alpha}(P, R)=m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(P, R) .
\end{aligned}
$$

Substituting these relationships into $m_{\alpha}(P, Q)+m_{\alpha}(Q, R)=m_{\alpha}(P, R)$ gives: $m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(P, Q)+m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(Q, R)=m_{\alpha}\left(B, B^{\prime}\right) m_{\beta}(P, R)$. Now $m_{\alpha}\left(B, B^{\prime}\right) \neq 0$ since, by the definition of "unit pair," $B \neq B^{\prime}$. So dividing through by $m_{\alpha}\left(B, B^{\prime}\right)$, the previous equation yields

$$
m_{\beta}(P, Q)+m_{\beta}(Q, R)=m_{\beta}(P, R),
$$

as claimed.

