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Chapter 2. Euclidean Geometry
2.5. Order Relations—Proofs of Theorems
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Theorem 2.5.1 (continued 1)

Theorem 2.5.1. Let A, B, and C be three points on line £ and let x, y,
and z be, respectively. the coordinates of these points in a coordinate
system on £. Then B is between A and C if and only if y is between x and
Z.

Proof (continued). Now suppose that B is between A and C. Then by
Definition 2.5.1, AB + BC = AC or, in terms of coordinates,

|x —y|+ |y —z| = |x — z|. Since x, y, and z are distinct real numbers,
there are six possible order relations:

y>x>z, xX>y>z, X>z>Yy,

Z>X>Y, Z>Yy>X, y>z>z

We simply exhaustively check these six cases. First, if y > x > z then
AB=|x—y|l=y—x,AC=|x—z|=x—z,and BC=|y —z|=y — z.
Substituting into AB+ BC =ACweget (y —x)+(y—z)=x—zor
2y = 2z or x = y. But this cannot be the case since A and B are distinct
points and so the relation y > x > z is not possible.
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Theorem 2.5.1

Theorem 2.5.1. Let A, B, and C be three points on line ¢ and let x, y,
and z be, respectively. the coordinates of these points in a coordinate
system on £. Then B is between A and C if and only if y is between x and
Z.

Proof. First, suppose that y is between x and z. Then either x >y > z
orx<y<z Ifx>y>zthewehavex—y >0, y—z>0, and

x —z >0, so that in terms of absolute values we have |x —y| =x —y,
ly —z| =y —z, and |x — z| = x — z. By Postulate 11 (The Ruler
Postulate), |x —y| = AB, |y — z| = BC, and |x — z| = AC. Substituting
we have

AB+BC=|x—x|+ly—z|=(x—-y)+(y—2z)=x—z=|x—2z| = AC.

So by Definition 2.5.1, B is between A and C, as claimed. If x < y < z,
then the argument is the same except that the absolute values are the
negatives of those given above.
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Theorem 2.5.1 (continued 2)

Theorem 2.5.1. Let A, B, and C be three points on line £ and let x, y,
and z be, respectively. the coordinates of these points in a coordinate
system on £. Then B is between A and C if and only if y is between x and
Z.

Proof (continued). Similarly, the relations z > x >y, y > x > z, and

y > z > x are not possible. However, the relations x > y > z and

z >y > x are possible. For example, if x > y > z then
AB=|x—y|l=x—y, AC=|x—z|=x—z,and BC=|y—z|=y — z.
Substituting into AB+ BC=ACweget (x—y)+(y—z)=x—2zor

x — z = x — z, which is possible! So if B is between A and C then either
x>y >zof z>y>x; thatis, y is between x and z, as claimed. O
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Theorem 2.5.3

Theorem 2.5.3. Let A and B be distinct points and let a and b be,
<re;s)pectively, the coordinatesithese points in any coordinate system on
AB. Then if a < b, the ray AB is the same as the set of points whose
coordinates x satisfy the condition a < x. If a > b, the ray AB is the same
as the set of points whose coordinates satisfy the condition a > x.

Proof. First, suppose that a < b. If X is any point of ray A_B> then X is
either a point of the segment AB (so that X is between A and B) or else
is a point such that B is between A an X. If X is a point of AB, then by
Theorem 2.5.2 the coordinate x of point X must be such that a < x < b
(with equality when X is an endpoint of AB). Next, if B lies between A
and X, then again by Theorem 2.5.2 we have a < b < x. In either case,

a < x as claimed.

Second, suppose a < x. Then either a < x < bor a< b < x. Hence X
either belongs to the segment AB or is a point suﬂ)that B lies between A
and X, respectively. In both cases, X belongs to AB by Definition 2.5.3,

as claimed. O
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Theorem 2.5.5. The Point-Plotting Theorem

Theorem 2.5.5. The Point-Plotting Theorem (continued)

Theorem 2.5.5. The Point-Plotting Theorem.

If AB is a ray and d a positive number, then there is exactly one point on
/ﬁ and one point on the ray opposite to A_é such that the distance from
A to each of these points relative to a given unit pair is d.

Proof (continued). By Theorem 2.5.4, the points D and D’ are on

. - H . H -
opposite rays on the line AB, and so one of them is on ray AB and one is
on the opposite ray, as claimed. ]

Foundations of Geometry November 5, 2021 8 /17

Theorem 2.5.5. The Point-Plotting Theorem

Theorem 2.5.5. The Point-Plotting Theorem

Theorem 2.5.5. The Point-Plotting Theorem.
—
If AB is a ray and d a positive number, then there is exactly one point on

— —
AB and one point on the ray opposite to AB such that the distance from
A to each of these points relative to a given unit pair is d.

Proof. By Postulate 10 there is a point U on line AB such that AU=1
relative to the given unit pair. By Postulate 11 (The Ruler Postulate) there
is a coordinate system on jﬁ in which point A has coordinate 0 and point
U has coordinate 1. Then in this coordinate system, there is a unique
point D whose coordinate is the given positive number d and a unique
point D’ whose coordinate is the negative number —d. By Postulate 11
(again) we have AD = |0 — d| = d and AD’ = |0 — (—d)| = d. Hence the
distance from A to each of the points D and D' is d.
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Theorem 2.5.7

Theorem 2.5.7

Theorem 2.5.7. The intersection of two convex sets is a convex set.

Proof. Let S; and S, be two convex sets and let AB be any segment
whose endpoints lie in the intersection of §; and S5, S1 N S>. From the
definition of intersection of two sets (Definition 2.3.3), endpoints A and B
of the segment lie in both set S; and set S». Since both S; and S are
convex by hypothesis, then the segment AB lies entirely in both S; and S,
by the definition of convex (Definition 2.5.4). Therefore AB lies entirely in
the intersection of S; and S,. Since segment AB was an arbitrary segment
whose endpoints line in 53 N S, then the intersection is convex, as
claimed. O
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Theorem 2.5.9

Theorem 2.5.9. The points of space which do not lie in a given plane
form two sets such that:

(1) each set is convex, and

(2) any segment joining a point in one set to a point in the other
set intersects the given plane.

Proof. Let 7 be an arbitrary plane and let O be an arbitrary point which
does not lie in . Now any given segment with O as an endpoint either
intersects w or not. So every point in space which is not a point of 7 must
belong to one or the other side of the following two nonempty sets:

(1) the set Sy consisting of O and all points A; such that the
segment OA; does not intersect 7, or
(2) the set S, consisting of all points Ay not in 7 such that the
segment OA, intersects 7.
We next show that the sets S; and S, have the properties claimed in the
theorem.

Foundations of Geometry November 5, 2021 10 / 17

Theorem 2.5.9

Theorem 2.5.9 (continued 2)

Proof (continued). So OA; /

does not intersect line p since

it lies in plane m. Hence in A

plane « the points O and 0

A7 lie on the same side of line

p by Postulate 12 (The Plane

-Separation Postulate). Since il

OA; intersects plane 7 and \/
A

must do so at a point on line p,
then O and A; lie on opposite 2
sides of p (also by Postulate 12). /
Thus A; and A, are on opposite sides of p and so by Postulate 12, the
segment A; A, intersects line p and hence plane m, as claimed. We now
turn out attention to the claims that S; and S are convex.
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Theorem 2.5.9

Theorem 2.5.9 (continued 1)

Proof (continued). First,
suppose that A; and A, are
arbitrary points in 51 and 5, 4
respectively. By the definition 0
of S,, segment OA, intersects
intersects m at some point P.
Therefore, if A; = O then

P

I'here P

A1A; = OAs intersects 7, as \/
A

claimed. So we can assume
without loss of generality
that A1 # O. Let a be a

2

|

plane containing points A;, Az, and O (there are multiple such planes if
A1, Az, O are collinear). Since P is a point on OA; then by Postulate 5
point P is in plane « and so the two planes a and 7 intersect. By
Postulate 6 the planes intersect in some line p. Now OA; does not
intersect plane 7 (by the choice of A; and the definition of Sy).
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Theorem 2.5.9

Theorem 2.5.9 (continued 3)

Theorem 2.5.9. The points of space which do not lie in a given plane
form two sets such that:
(1) each set is convex, and

(2) any segment joining a point in one set to a point in the other
set intersects the given plane.

Proof (continued). For the convexity of Si, let A; and A} by two
arbitrary points in 5;. ASSUME segment A; A} does not lie entirely in 5.
Then there must be at least one point Q of A;A] (that is, a point between
A1 and A} on the segment) which is either a point of S, or a point of 7.
First, if @ is a point of S, then as shown above, both segment A;Q and
segment A} Q intersect plane m. These points of intersection must be

—

distinct since one lies on the ray QA; and the other lines on the opposite
-~ . — . . .

ray QA]. But then the line A;A] intersects plane 7 in two points and so

by Postulate 5 A;A] lies in plane 7. But then A; and A] themselves line
in m, a (first) CONTRADICTION to the fact that A; and A} are in S;.
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Theorem 2.5.9 (continued 4)

Proof (continued). Second, if Q is a point of 7 then a plane «
containing points A1, A}, O intersects plane 7 at point @ (remember, Q is
a point of A;A}). So planes 7 and « intersect in some line p by Postulate
6. Since A1, A, and O line in plane o and O is between A; and A] on
A1 A}, then by Postulate 12 (The Plane-Separation Postulate) A; and A
are on opposite sides of p in plane a. Now point O is also in plane o and
not on line p, so either O and A; are on opposite sides of p, or O and A}
are on opposite sides of p. So either OA; or OA] intersects line p and
hence intersects plane 7, but this is a (second) CONTRADICTION to the
fact that A; and A} are in S;. So the assumption that segment TA’I does
not lie entirely in Sy is false and hence every point of A;A] must be a
point of S1. Since A; and A are arbitrary points of S1, we have that S; is
a convex set, as claimed. “By an almost identical argument” (as Wylie
states on page 66) we can show that S, is also convex, as claimed. O
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Theorem 2.5.10 (continued 1)

Proof (continued). If AX and VB intersect, then their intersection must
be a point on VB (and not on the ray opposite to VB since the only point
of this ray in the union of H and its edge is V by Exercise 2.5.C); notice
that we do not have A, X, B collinear so the point of intersection cannot
by V. But we have that points A and B are on opposite sides of W( by
hypoﬂgsis. Hence, with the exce(Ltion of the distinct points V and X, AX
and VB lie on opposite sides of VX by Exercise 2.5.C, and therefore can
have no point in common.
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Theorem 2.5.10

Theorem 2.5.10

Theorem 2.5.10. If V is any point on the edge of a halfplane H and if A,
B, and X are three points in the union of H and its edge such that:

(1) no two of the points A, B, X are collinear with V and

(2) A and B lie on opposite sides of VX,
then A <a_n}d X lie on the same side of % and B and X lie on the same
side of VA.

Proof. Since points A, B, X H 2
lie in the union of H and its
edge, and since this set is

convex by Exercise 2.5.A, then B
AX lies in the union of H
and its edge. Since V is on %
the edge of H, and B is in
—
H, then ray VB lies in the
union of H and its edge by Exercise 2.5.B.
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Theorem 2.5.10

Theorem 2.5.10 (continued 2)
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Proof (continued). Thus, since AX can intersect neither the ray VB nor

the ray opposite to V—B> then points A and X are on the same side of VB.
Finally, an identical argument shows that B and X lie on the same side of

N d
VA, as asserted. O
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