Foundations of Geometry

Chapter 2. Euclidean Geometry

2.5. Order Relations-Proofs of Theorems

Table of contents

(1) Theorem 2.5.1
(2) Theorem 2.5.3
(3) Theorem 2.5.5. The Point-Plotting Theorem
(4) Theorem 2.5.7
(5) Theorem 2.5.9
(6) Theorem 2.5.10

Theorem 2.5.1

Theorem 2.5.1. Let A, B, and C be three points on line ℓ and let x, y, and z be, respectively. the coordinates of these points in a coordinate system on ℓ. Then B is between A and C if and only if y is between x and Z.

Proof. First, suppose that y is between x and z. Then either $x>y>z$ or $x<y<z$. If $x>y>z$ the we have $x-y>0, y-z>0$, and $x-z>0$, so that in terms of absolute values we have $|x-y|=x-y$, $|y-z|=y-z$, and $|x-z|=x-z$. By Postulate 11 (The Ruler Postulate), $|x-y|=A B,|y-z|=B C$, and $|x-z|=A C$.

Theorem 2.5.1

Theorem 2.5.1. Let A, B, and C be three points on line ℓ and let x, y, and z be, respectively. the coordinates of these points in a coordinate system on ℓ. Then B is between A and C if and only if y is between x and z.

Proof. First, suppose that y is between x and z. Then either $x>y>z$ or $x<y<z$. If $x>y>z$ the we have $x-y>0, y-z>0$, and $x-z>0$, so that in terms of absolute values we have $|x-y|=x-y$, $|y-z|=y-z$, and $|x-z|=x-z$. By Postulate 11 (The Ruler Postulate), $|x-y|=A B,|y-z|=B C$, and $|x-z|=A C$. Substituting we have
$A B+B C=|x-x|+|y-z|=(x-y)+(y-z)=x-z=|x-z|=A C$.
So by Definition 2.5.1, B is between A and C, as claimed. If $x<y<z$, then the argument is the same except that the absolute values are the negatives of those given above.

Theorem 2.5.1

Theorem 2.5.1. Let A, B, and C be three points on line ℓ and let x, y, and z be, respectively. the coordinates of these points in a coordinate system on ℓ. Then B is between A and C if and only if y is between x and z.

Proof. First, suppose that y is between x and z. Then either $x>y>z$ or $x<y<z$. If $x>y>z$ the we have $x-y>0, y-z>0$, and $x-z>0$, so that in terms of absolute values we have $|x-y|=x-y$, $|y-z|=y-z$, and $|x-z|=x-z$. By Postulate 11 (The Ruler Postulate), $|x-y|=A B,|y-z|=B C$, and $|x-z|=A C$. Substituting we have
$A B+B C=|x-x|+|y-z|=(x-y)+(y-z)=x-z=|x-z|=A C$.
So by Definition 2.5.1, B is between A and C, as claimed. If $x<y<z$, then the argument is the same except that the absolute values are the negatives of those given above.

Theorem 2.5.1 (continued 1)

Theorem 2.5.1. Let A, B, and C be three points on line ℓ and let x, y, and z be, respectively. the coordinates of these points in a coordinate system on ℓ. Then B is between A and C if and only if y is between x and Z.

Proof (continued). Now suppose that B is between A and C. Then by Definition 2.5.1, $A B+B C=A C$ or, in terms of coordinates, $|x-y|+|y-z|=|x-z|$. Since x, y, and z are distinct real numbers, there are six possible order relations:

$$
\begin{aligned}
& y>x>z, \quad x>y>z, \quad x>z>y \\
& z>x>y, \quad z>y>x, \quad y>z>z
\end{aligned}
$$

We simply exhaustively check these six cases. First, if $y>x>z$ then
\square Substituting into $A B+B C=A C$ we get $(y-x)+(y-z)=x-z$ or $2 y=2 z$ or $x=y$. But this cannot be the case since A and B are distinct points and so the relation $y>x>z$ is not possible.

Theorem 2.5.1 (continued 1)

Theorem 2.5.1. Let A, B, and C be three points on line ℓ and let x, y, and z be, respectively. the coordinates of these points in a coordinate system on ℓ. Then B is between A and C if and only if y is between x and z.

Proof (continued). Now suppose that B is between A and C. Then by Definition 2.5.1, $A B+B C=A C$ or, in terms of coordinates, $|x-y|+|y-z|=|x-z|$. Since x, y, and z are distinct real numbers, there are six possible order relations:

$$
\begin{aligned}
& y>x>z, \quad x>y>z, \quad x>z>y \\
& z>x>y, \quad z>y>x, \quad y>z>z
\end{aligned}
$$

We simply exhaustively check these six cases. First, if $y>x>z$ then $A B=|x-y|=y-x, A C=|x-z|=x-z$, and $B C=|y-z|=y-z$. Substituting into $A B+B C=A C$ we get $(y-x)+(y-z)=x-z$ or $2 y=2 z$ or $x=y$. But this cannot be the case since A and B are distinct points and so the relation $y>x>z$ is not possible.

Theorem 2.5.1 (continued 2)

Theorem 2.5.1. Let A, B, and C be three points on line ℓ and let x, y, and z be, respectively. the coordinates of these points in a coordinate system on ℓ. Then B is between A and C if and only if y is between x and z.

Proof (continued). Similarly, the relations $z>x>y, y>x>z$, and $y>z>x$ are not possible. However, the relations $x>y>z$ and $z>y>x$ are possible. For example, if $x>y>z$ then $A B=|x-y|=x-y, A C=|x-z|=x-z$, and $B C=|y-z|=y-z$. Substituting into $A B+B C=A C$ we get $(x-y)+(y-z)=x-z$ or $x-z=x-z$, which is possible! So if B is between A and C then either $x>y>z$ of $z>y>x$; that is, y is between x and z, as claimed.

Theorem 2.5.3

Theorem 2.5.3. Let A and B be distinct points and let a and b be, respectively, the coordinates of these points in any coordinate system on $\overleftrightarrow{A B}$. Then if $a<b$, the ray $\overrightarrow{A B}$ is the same as the set of points whose coordinates x satisfy the condition $a \leq x$. If $a>b$, the ray $\overrightarrow{A B}$ is the same as the set of points whose coordinates satisfy the condition $a \geq x$.
Proof. First, suppose that $a<b$. If X is any point of ray $\overrightarrow{A B}$, then X is either a point of the segment $\overline{A B}$ (so that X is between A and B) or else is a point such that B is between A an X. If X is a point of $\overline{A B}$, then by Theorem 2.5.2 the coordinate x of point X must be such that $a \leq x \leq b$ (with equality when X is an endpoint of $\overline{A B}$). Next, if B lies between A and X, then again by Theorem 2.5 .2 we have $a<b<x$. In either case, $a \leq x$ as claimed.

Theorem 2.5.3

Theorem 2.5.3. Let A and B be distinct points and let a and b be, respectively, the coordinates of these points in any coordinate system on $\overleftrightarrow{A B}$. Then if $a<b$, the ray $\overrightarrow{A B}$ is the same as the set of points whose coordinates x satisfy the condition $a \leq x$. If $a>b$, the ray $\overrightarrow{A B}$ is the same as the set of points whose coordinates satisfy the condition $a \geq x$.
Proof. First, suppose that $a<b$. If X is any point of ray $\overrightarrow{A B}$, then X is either a point of the segment $\overline{A B}$ (so that X is between A and B) or else is a point such that B is between A an X. If X is a point of $\overline{A B}$, then by Theorem 2.5.2 the coordinate x of point X must be such that $a \leq x \leq b$ (with equality when X is an endpoint of $\overline{A B}$). Next, if B lies between A and X, then again by Theorem 2.5 .2 we have $a<b<x$. In either case, $a \leq x$ as claimed.
Second, suppose $a \leq x$. Then either $a \leq x \leq b$ or $a<b<x$. Hence X either belongs to the segment $\overline{A B}$ or is a point such that B lies between A and X, respectively. In both cases, X belongs to $\overrightarrow{A B}$ by Definition 2.5.3,

Theorem 2.5.3

Theorem 2.5.3. Let A and B be distinct points and let a and b be, respectively, the coordinates of these points in any coordinate system on $\overleftrightarrow{A B}$. Then if $a<b$, the ray $\overrightarrow{A B}$ is the same as the set of points whose coordinates x satisfy the condition $a \leq x$. If $a>b$, the ray $\overrightarrow{A B}$ is the same as the set of points whose coordinates satisfy the condition $a \geq x$.
Proof. First, suppose that $a<b$. If X is any point of ray $\overrightarrow{A B}$, then X is either a point of the segment $\overline{A B}$ (so that X is between A and B) or else is a point such that B is between A an X. If X is a point of $\overline{A B}$, then by Theorem 2.5.2 the coordinate x of point X must be such that $a \leq x \leq b$ (with equality when X is an endpoint of $\overline{A B}$). Next, if B lies between A and X, then again by Theorem 2.5 .2 we have $a<b<x$. In either case, $a \leq x$ as claimed.
Second, suppose $a \leq x$. Then either $a \leq x \leq b$ or $a<b<x$. Hence X either belongs to the segment $\overline{A B}$ or is a point such that B lies between A and X, respectively. In both cases, X belongs to $\overrightarrow{A B}$ by Definition 2.5.3, as claimed.

Theorem 2.5.5. The Point-Plotting Theorem

Theorem 2.5.5. The Point-Plotting Theorem.

If $\overrightarrow{A B}$ is a ray and d a positive number, then there is exactly one point on $\overrightarrow{A B}$ and one point on the ray opposite to $\overrightarrow{A B}$ such that the distance from A to each of these points relative to a given unit pair is d.

Proof. By Postulate 10 there is a point U on line $\overleftrightarrow{A B}$ such that $A U=1$ relative to the given unit pair. By Postulate 11 (The Ruler Postulate) there is a coordinate system on $\overrightarrow{A B}$ in which point A has coordinate 0 and point U has coordinate 1 . Then in this coordinate system, there is a unique point D whose coordinate is the given positive number d and a unique point D^{\prime} whose coordinate is the negative number $-d$. By Postulate 11 (again) we have $A D=|0-d|=d$ and $A D^{\prime}=|0-(-d)|=d$. Hence the distance from A to each of the points D and D^{\prime} is d.

Theorem 2.5.5. The Point-Plotting Theorem

Theorem 2.5.5. The Point-Plotting Theorem.

If $\overrightarrow{A B}$ is a ray and d a positive number, then there is exactly one point on $\overrightarrow{A B}$ and one point on the ray opposite to $\overrightarrow{A B}$ such that the distance from A to each of these points relative to a given unit pair is d.

Proof. By Postulate 10 there is a point U on line $\overleftrightarrow{A B}$ such that $A U=1$ relative to the given unit pair. By Postulate 11 (The Ruler Postulate) there is a coordinate system on $\overleftrightarrow{A B}$ in which point A has coordinate 0 and point U has coordinate 1 . Then in this coordinate system, there is a unique point D whose coordinate is the given positive number d and a unique point D^{\prime} whose coordinate is the negative number $-d$. By Postulate 11 (again) we have $A D=|0-d|=d$ and $A D^{\prime}=|0-(-d)|=d$. Hence the distance from A to each of the points D and D^{\prime} is d.

Theorem 2.5.5. The Point-Plotting Theorem (continued)

Theorem 2.5.5. The Point-Plotting Theorem.

If $\overrightarrow{A B}$ is a ray and d a positive number, then there is exactly one point on $\overrightarrow{A B}$ and one point on the ray opposite to $\overrightarrow{A B}$ such that the distance from A to each of these points relative to a given unit pair is d.

Proof (continued). By Theorem 2.5.4, the points D and D^{\prime} are on opposite rays on the line $\overleftrightarrow{A B}$, and so one of them is on ray $\overrightarrow{A B}$ and one is on the opposite ray, as claimed.

Theorem 2.5.7

Theorem 2.5.7. The intersection of two convex sets is a convex set.

Proof. Let S_{1} and S_{2} be two convex sets and let $\overline{A B}$ be any segment whose endpoints lie in the intersection of S_{1} and $S_{2}, S_{1} \cap S_{2}$. From the definition of intersection of two sets (Definition 2.3.3), endpoints A and B of the segment lie in both set S_{1} and set S_{2}.

Theorem 2.5.7

Theorem 2.5.7. The intersection of two convex sets is a convex set.

Proof. Let S_{1} and S_{2} be two convex sets and let $\overline{A B}$ be any segment whose endpoints lie in the intersection of S_{1} and $S_{2}, S_{1} \cap S_{2}$. From the definition of intersection of two sets (Definition 2.3.3), endpoints A and B of the segment lie in both set S_{1} and set S_{2}. Since both S_{1} and S_{2} are convex by hypothesis, then the segment $A B$ lies entirely in both S_{1} and S_{2} by the definition of convex (Definition 2.5.4). Therefore $\overline{A B}$ lies entirely in the intersection of S_{1} and S_{2}. Since segment $\overline{A B}$ was an arbitrary segment whose endpoints line in $S_{1} \cap S_{2}$, then the intersection is convex, as claimed.

Theorem 2.5.7

Theorem 2.5.7. The intersection of two convex sets is a convex set.

Proof. Let S_{1} and S_{2} be two convex sets and let $\overline{A B}$ be any segment whose endpoints lie in the intersection of S_{1} and $S_{2}, S_{1} \cap S_{2}$. From the definition of intersection of two sets (Definition 2.3.3), endpoints A and B of the segment lie in both set S_{1} and set S_{2}. Since both S_{1} and S_{2} are convex by hypothesis, then the segment $\overline{A B}$ lies entirely in both S_{1} and S_{2} by the definition of convex (Definition 2.5.4). Therefore $\overline{A B}$ lies entirely in the intersection of S_{1} and S_{2}. Since segment $\overline{A B}$ was an arbitrary segment whose endpoints line in $S_{1} \cap S_{2}$, then the intersection is convex, as claimed.

Theorem 2.5.9

Theorem 2.5.9. The points of space which do not lie in a given plane form two sets such that:
(1) each set is convex, and
(2) any segment joining a point in one set to a point in the other set intersects the given plane.

Proof. Let π be an arbitrary plane and let O be an arbitrary point which does not lie in π. Now any given segment with O as an endpoint either intersects π or not. So every point in space which is not a point of π must belong to one or the other side of the following two nonempty sets:
(1) the set S_{1} consisting of O and all points A_{1} such that the segment $\overline{O A_{1}}$ does not intersect π, or
(2) the set S_{2} consisting of all points A_{2} not in π such that the segment $O A_{2}$ intersects π.
We next show that the sets S_{1} and S_{2} have the properties claimed in the theorem.

Theorem 2.5.9

Theorem 2.5.9. The points of space which do not lie in a given plane form two sets such that:
(1) each set is convex, and
(2) any segment joining a point in one set to a point in the other set intersects the given plane.

Proof. Let π be an arbitrary plane and let O be an arbitrary point which does not lie in π. Now any given segment with O as an endpoint either intersects π or not. So every point in space which is not a point of π must belong to one or the other side of the following two nonempty sets:
(1) the set S_{1} consisting of O and all points A_{1} such that the segment $\overline{O A_{1}}$ does not intersect π, or
(2) the set S_{2} consisting of all points A_{2} not in π such that the segment $\overline{O A_{2}}$ intersects π.
We next show that the sets S_{1} and S_{2} have the properties claimed in the theorem.

Theorem 2.5.9 (continued 1)

Proof (continued). First, suppose that A_{1} and A_{2} are arbitrary points in S_{1} and S_{2}, respectively. By the definition of S_{2}, segment $\overline{O A_{2}}$ intersects intersects π at some point P. Therefore, if $A_{1}=O$ then $\overline{A_{1} A_{2}}=\overline{O A_{2}}$ intersects π, as claimed. So we can assume without loss of generality that $A_{1} \neq O$. Let α be a

plane containing points A_{1}, A_{2}, and O (there are multiple such planes if A_{1}, A_{2}, O are collinear). Since P is a point on $\overline{O A_{2}}$ then by Postulate 5 point P is in plane α and so the two planes α and π intersect. By Postulate 6 the planes intersect in some line p. Now $O A_{1}$ does not intersect plane π (by the choice of A_{1} and the definition of S_{1}).

Theorem 2.5.9 (continued 1)

Proof (continued). First,

 suppose that A_{1} and A_{2} are arbitrary points in S_{1} and S_{2}, respectively. By the definition of S_{2}, segment $\overline{O A_{2}}$ intersects intersects π at some point P.Therefore, if $A_{1}=O$ then
$\overline{A_{1} A_{2}}=\overline{O A_{2}}$ intersects π, as claimed. So we can assume without loss of generality that $A_{1} \neq O$. Let α be a
 plane containing points A_{1}, A_{2}, and O (there are multiple such planes if A_{1}, A_{2}, O are collinear). Since P is a point on $\overline{O A_{2}}$ then by Postulate 5 point P is in plane α and so the two planes α and π intersect. By Postulate 6 the planes intersect in some line p. Now $\overline{O A_{1}}$ does not intersect plane π (by the choice of A_{1} and the definition of S_{1}).

Theorem 2.5.9 (continued 2)

Proof (continued). So $\overline{O A_{1}}$ does not intersect line p since it lies in plane π. Hence in plane α the points O and A_{1} lie on the same side of line p by Postulate 12 (The Plane -Separation Postulate). Since $O A_{2}$ intersects plane π and must do so at a point on line p, then O and A_{2} lie on opposite sides of p (also by Postulate 12).

Thus A_{1} and A_{2} are on opposite sides of p and so by Postulate 12 , the segment $\overline{A_{1} A_{2}}$ intersects line p and hence plane π, as claimed. We now turn out attention to the claims that S_{1} and S_{2} are convex.

Theorem 2.5.9 (continued 2)

Proof (continued). So $\overline{O A_{1}}$ does not intersect line p since it lies in plane π. Hence in plane α the points O and A_{1} lie on the same side of line p by Postulate 12 (The Plane -Separation Postulate). Since $\overline{O A_{2}}$ intersects plane π and must do so at a point on line p, then O and A_{2} lie on opposite sides of p (also by Postulate 12).

Thus A_{1} and A_{2} are on opposite sides of p and so by Postulate 12 , the segment $\overline{A_{1} A_{2}}$ intersects line p and hence plane π, as claimed. We now turn out attention to the claims that S_{1} and S_{2} are convex.

Theorem 2.5.9 (continued 3)

Theorem 2.5.9. The points of space which do not lie in a given plane form two sets such that:
(1) each set is convex, and
(2) any segment joining a point in one set to a point in the other set intersects the given plane.
Proof (continued). For the convexity of S_{1}, let A_{1} and A_{1}^{\prime} by two arbitrary points in S_{1}. ASSUME segment $\overline{A_{1} A_{1}^{\prime}}$ does not lie entirely in S_{1}. Then there must be at least one point Q of $\overline{A_{1} A_{1}^{\prime}}$ (that is, a point between A_{1} and A_{1}^{\prime} on the segment) which is either a point of S_{2} or a point of π. First, if Q is a point of S_{2} then as shown above, both segment $\overline{A_{1} Q}$ and segment $\overline{A_{1}^{\prime} Q}$ intersect plane π. These points of intersection must be distinct since one lies on the ray $\overrightarrow{Q A_{1}}$ and the other lines on the opposite ray $\overrightarrow{Q A_{1}^{\prime}}$. But then the line $\overleftrightarrow{A_{1} A_{1}^{\prime}}$ intersects plane π in two points and so by Postulate $5 \overleftrightarrow{A_{1} A_{1}^{\prime}}$ lies in plane π. But then A_{1} and A_{1}^{\prime} themselves line in π, a (first) CONTRADICTION to the fact that A_{1} and A_{1}^{\prime} are in S_{1}.

Theorem 2.5.9 (continued 4)

Proof (continued). Second, if Q is a point of π then a plane α containing points A_{1}, A_{1}^{\prime}, O intersects plane π at point Q (remember, Q is a point of $\left.\overline{A_{1} A_{1}^{\prime}}\right)$. So planes π and α intersect in some line p by Postulate 6. Since A_{1}, A_{1}^{\prime}, and O line in plane α and O is between A_{1} and A_{1}^{\prime} on $\overline{A_{1} A_{1}^{\prime}}$, then by Postulate 12 (The Plane-Separation Postulate) A_{1} and A_{1}^{\prime} are on opposite sides of p in plane α. Now point O is also in plane α and not on line p, so either O and A_{1} are on opposite sides of p, or O and A_{1}^{\prime} are on opposite sides of p. So either $\overline{O A_{1}}$ or $\overline{O A_{1}^{\prime}}$ intersects line p and hence intersects plane π, but this is a (second) CONTRADICTION to the fact that A_{1} and A_{1}^{\prime} are in S_{1}. So the assumption that segment $A_{1} A_{1}^{\prime}$ does not lie entirely in S_{1} is false and hence every point of $A_{1} A_{1}^{\prime}$ must be a point of S_{1}. Since A_{1} and A_{1}^{\prime} are arbitrary points of S_{1}, we have that S_{1} is a convex set, as claimed. "By an almost identical argument" (as Wylie states on page 66) we can show that S_{2} is also convex, as claimed.

Theorem 2.5.9 (continued 4)

Proof (continued). Second, if Q is a point of π then a plane α containing points A_{1}, A_{1}^{\prime}, O intersects plane π at point Q (remember, Q is a point of $\overline{A_{1} A_{1}^{\prime}}$). So planes π and α intersect in some line p by Postulate 6. Since A_{1}, A_{1}^{\prime}, and O line in plane α and O is between A_{1} and A_{1}^{\prime} on $\overline{A_{1} A_{1}^{\prime}}$, then by Postulate 12 (The Plane-Separation Postulate) A_{1} and A_{1}^{\prime} are on opposite sides of p in plane α. Now point O is also in plane α and not on line p, so either O and A_{1} are on opposite sides of p, or O and A_{1}^{\prime} are on opposite sides of p. So either $O A_{1}$ or $O A_{1}^{\prime}$ intersects line p and hence intersects plane π, but this is a (second) CONTRADICTION to the fact that A_{1} and A_{1}^{\prime} are in S_{1}. So the assumption that segment $\overline{A_{1} A_{1}^{\prime}}$ does not lie entirely in S_{1} is false and hence every point of $\overline{A_{1} A_{1}^{\prime}}$ must be a point of S_{1}. Since A_{1} and A_{1}^{\prime} are arbitrary points of S_{1}, we have that S_{1} is a convex set, as claimed. "By an almost identical argument" (as Wylie states on page 66) we can show that S_{2} is also convex, as claimed.

Theorem 2.5.10

Theorem 2.5.10. If V is any point on the edge of a halfplane H and if A, B, and X are three points in the union of H and its edge such that:
(1) no two of the points A, B, X are collinear with V and
(2) A and B lie on opposite sides of $\overleftrightarrow{V X}$,
then A and X lie on the same side of $\overleftrightarrow{V B}$, and B and X lie on the same side of $\overleftrightarrow{V A}$.

Proof. Since points A, B, X
lie in the union of H and its
edge, and since this set is
convex by Exercise 2.5.A, then
$\overline{A X}$ lies in the union of H
and its edge. Since V is on
the edge of H, and B is in
H, then ray $\overrightarrow{V B}$ lies in the
union of H and its edge by Exercise 2.5.B.

Theorem 2.5.10

Theorem 2.5.10. If V is any point on the edge of a halfplane H and if A, B, and X are three points in the union of H and its edge such that:
(1) no two of the points A, B, X are collinear with V and
(2) A and B lie on opposite sides of $\overleftrightarrow{V X}$,
then A and X lie on the same side of $\overleftrightarrow{V B}$, and B and X lie on the same side of $\overleftrightarrow{V A}$.

Proof. Since points A, B, X lie in the union of H and its edge, and since this set is convex by Exercise 2.5.A, then $\overline{A X}$ lies in the union of H and its edge. Since V is on the edge of H, and B is in H, then ray $\overrightarrow{V B}$ lies in the
 union of H and its edge by Exercise 2.5.B.

Theorem 2.5.10

Theorem 2.5.10. If V is any point on the edge of a halfplane H and if A, B, and X are three points in the union of H and its edge such that:
(1) no two of the points A, B, X are collinear with V and
(2) A and B lie on opposite sides of $\overleftrightarrow{V X}$,
then A and X lie on the same side of $\overleftrightarrow{V B}$, and B and X lie on the same side of $\overleftrightarrow{V A}$.

Proof. Since points A, B, X lie in the union of H and its edge, and since this set is convex by Exercise 2.5.A, then $\overline{A X}$ lies in the union of H and its edge. Since V is on the edge of H, and B is in H, then ray $\overrightarrow{V B}$ lies in the
 union of H and its edge by Exercise 2.5.B.

Theorem 2.5.10 (continued 1)

Proof (continued). If $\overline{A X}$ and $\overleftrightarrow{V B}$ intersect, then their intersection must be a point on $\overrightarrow{V B}$ (and not on the ray opposite to $\overrightarrow{V B}$ since the only point of this ray in the union of H and its edge is V by Exercise 2.5.C); notice that we do not have A, X, B collinear so the point of intersection cannot by V. But we have that points A and B are on opposite sides of $V X$ by hypothesis. Hence, with the exception of the distinct points V and $X, \overline{A X}$ and $\overrightarrow{V B}$ lie on opposite sides of $\overleftrightarrow{V X}$ by Exercise 2.5.C, and therefore can have no point in common.

Theorem 2.5.10 (continued 1)

Proof (continued). If $\overline{A X}$ and $\overleftrightarrow{V B}$ intersect, then their intersection must be a point on $\overrightarrow{V B}$ (and not on the ray opposite to $\overrightarrow{V B}$ since the only point of this ray in the union of H and its edge is V by Exercise 2.5.C); notice that we do not have A, X, B collinear so the point of intersection cannot by V. But we have that points A and B are on opposite sides of $\overleftrightarrow{V X}$ by hypothesis. Hence, with the exception of the distinct points V and $X, \overline{A X}$ and $\overrightarrow{V B}$ lie on opposite sides of $\overleftrightarrow{V X}$ by Exercise 2.5.C, and therefore can have no point in common.

Theorem 2.5.10 (continued 2)

Proof (continued). Thus, since $\overline{A X}$ can intersect neither the ray $\overrightarrow{V B}$ nor the ray opposite to $\overrightarrow{V B}$, then points A and X are on the same side of $\overleftrightarrow{V B}$. Finally, an identical argument shows that B and X lie on the same side of $\overleftrightarrow{V A}$, as asserted.

