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Theorem 2.5.1

Theorem 2.5.1

Theorem 2.5.1. Let A, B, and C be three points on line ` and let x , y ,
and z be, respectively. the coordinates of these points in a coordinate
system on `. Then B is between A and C if and only if y is between x and
z .

Proof. First, suppose that y is between x and z . Then either x > y > z
or x < y < z . If x > y > z the we have x − y > 0, y − z > 0, and
x − z > 0, so that in terms of absolute values we have |x − y | = x − y ,
|y − z | = y − z , and |x − z | = x − z . By Postulate 11 (The Ruler
Postulate), |x − y | = AB, |y − z | = BC , and |x − z | = AC .

Substituting
we have

AB + BC = |x − x |+ |y − z | = (x − y) + (y − z) = x − z = |x − z | = AC .

So by Definition 2.5.1, B is between A and C , as claimed. If x < y < z ,
then the argument is the same except that the absolute values are the
negatives of those given above.
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Theorem 2.5.1

Theorem 2.5.1 (continued 1)

Theorem 2.5.1. Let A, B, and C be three points on line ` and let x , y ,
and z be, respectively. the coordinates of these points in a coordinate
system on `. Then B is between A and C if and only if y is between x and
z .

Proof (continued). Now suppose that B is between A and C . Then by
Definition 2.5.1, AB + BC = AC or, in terms of coordinates,
|x − y |+ |y − z | = |x − z |. Since x , y , and z are distinct real numbers,
there are six possible order relations:

y > x > z , x > y > z , x > z > y ,

z > x > y , z > y > x , y > z > z .

We simply exhaustively check these six cases. First, if y > x > z then
AB = |x − y | = y − x , AC = |x − z | = x − z , and BC = |y − z | = y − z .
Substituting into AB + BC = AC we get (y − x) + (y − z) = x − z or
2y = 2z or x = y . But this cannot be the case since A and B are distinct
points and so the relation y > x > z is not possible.
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Theorem 2.5.1

Theorem 2.5.1 (continued 2)

Theorem 2.5.1. Let A, B, and C be three points on line ` and let x , y ,
and z be, respectively. the coordinates of these points in a coordinate
system on `. Then B is between A and C if and only if y is between x and
z .

Proof (continued). Similarly, the relations z > x > y , y > x > z , and
y > z > x are not possible. However, the relations x > y > z and
z > y > x are possible. For example, if x > y > z then
AB = |x − y | = x − y , AC = |x − z | = x − z , and BC = |y − z | = y − z .
Substituting into AB + BC = AC we get (x − y) + (y − z) = x − z or
x − z = x − z , which is possible! So if B is between A and C then either
x > y > z of z > y > x ; that is, y is between x and z , as claimed.
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Theorem 2.5.3

Theorem 2.5.3

Theorem 2.5.3. Let A and B be distinct points and let a and b be,
respectively, the coordinates of these points in any coordinate system on←→
AB. Then if a < b, the ray

−→
AB is the same as the set of points whose

coordinates x satisfy the condition a ≤ x . If a > b, the ray
−→
AB is the same

as the set of points whose coordinates satisfy the condition a ≥ x .

Proof. First, suppose that a < b. If X is any point of ray
−→
AB, then X is

either a point of the segment AB (so that X is between A and B) or else
is a point such that B is between A an X . If X is a point of AB, then by
Theorem 2.5.2 the coordinate x of point X must be such that a ≤ x ≤ b
(with equality when X is an endpoint of AB). Next, if B lies between A
and X , then again by Theorem 2.5.2 we have a < b < x . In either case,
a ≤ x as claimed.

Second, suppose a ≤ x . Then either a ≤ x ≤ b or a < b < x . Hence X
either belongs to the segment AB or is a point such that B lies between A

and X , respectively. In both cases, X belongs to
−→
AB by Definition 2.5.3,

as claimed.
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Theorem 2.5.5. The Point-Plotting Theorem

Theorem 2.5.5. The Point-Plotting Theorem

Theorem 2.5.5. The Point-Plotting Theorem.

If
−→
AB is a ray and d a positive number, then there is exactly one point on−→

AB and one point on the ray opposite to
−→
AB such that the distance from

A to each of these points relative to a given unit pair is d .

Proof. By Postulate 10 there is a point U on line
←→
AB such that AU = 1

relative to the given unit pair. By Postulate 11 (The Ruler Postulate) there

is a coordinate system on
←→
AB in which point A has coordinate 0 and point

U has coordinate 1. Then in this coordinate system, there is a unique
point D whose coordinate is the given positive number d and a unique
point D ′ whose coordinate is the negative number −d . By Postulate 11
(again) we have AD = |0− d | = d and AD ′ = |0− (−d)| = d . Hence the
distance from A to each of the points D and D ′ is d .
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Theorem 2.5.5. The Point-Plotting Theorem

Theorem 2.5.5. The Point-Plotting Theorem (continued)

Theorem 2.5.5. The Point-Plotting Theorem.

If
−→
AB is a ray and d a positive number, then there is exactly one point on−→

AB and one point on the ray opposite to
−→
AB such that the distance from

A to each of these points relative to a given unit pair is d .

Proof (continued). By Theorem 2.5.4, the points D and D ′ are on

opposite rays on the line
←→
AB, and so one of them is on ray

−→
AB and one is

on the opposite ray, as claimed.
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Theorem 2.5.7

Theorem 2.5.7

Theorem 2.5.7. The intersection of two convex sets is a convex set.

Proof. Let S1 and S2 be two convex sets and let AB be any segment
whose endpoints lie in the intersection of S1 and S2, S1 ∩ S2. From the
definition of intersection of two sets (Definition 2.3.3), endpoints A and B
of the segment lie in both set S1 and set S2.

Since both S1 and S2 are
convex by hypothesis, then the segment AB lies entirely in both S1 and S2

by the definition of convex (Definition 2.5.4). Therefore AB lies entirely in
the intersection of S1 and S2. Since segment AB was an arbitrary segment
whose endpoints line in S1 ∩ S2, then the intersection is convex, as
claimed.
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Theorem 2.5.9

Theorem 2.5.9

Theorem 2.5.9. The points of space which do not lie in a given plane
form two sets such that:

(1) each set is convex, and

(2) any segment joining a point in one set to a point in the other
set intersects the given plane.

Proof. Let π be an arbitrary plane and let O be an arbitrary point which
does not lie in π. Now any given segment with O as an endpoint either
intersects π or not. So every point in space which is not a point of π must
belong to one or the other side of the following two nonempty sets:

(1) the set S1 consisting of O and all points A1 such that the
segment OA1 does not intersect π, or

(2) the set S2 consisting of all points A2 not in π such that the
segment OA2 intersects π.

We next show that the sets S1 and S2 have the properties claimed in the
theorem.
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Theorem 2.5.9

Theorem 2.5.9 (continued 1)

Proof (continued). First,
suppose that A1 and A2 are
arbitrary points in S1 and S2,
respectively. By the definition
of S2, segment OA2 intersects
intersects π at some point P.
Therefore, if A1 = O then
A1A2 = OA2 intersects π, as
claimed. So we can assume
without loss of generality
that A1 6= O. Let α be a
plane containing points A1, A2, and O (there are multiple such planes if
A1,A2,O are collinear). Since P is a point on OA2 then by Postulate 5
point P is in plane α and so the two planes α and π intersect. By
Postulate 6 the planes intersect in some line p. Now OA1 does not
intersect plane π (by the choice of A1 and the definition of S1).
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Theorem 2.5.9

Theorem 2.5.9 (continued 2)

Proof (continued). So OA1

does not intersect line p since
it lies in plane π. Hence in
plane α the points O and
A1 lie on the same side of line
p by Postulate 12 (The Plane
-Separation Postulate). Since
OA2 intersects plane π and
must do so at a point on line p,
then O and A2 lie on opposite
sides of p (also by Postulate 12).
Thus A1 and A2 are on opposite sides of p and so by Postulate 12, the
segment A1A2 intersects line p and hence plane π, as claimed. We now
turn out attention to the claims that S1 and S2 are convex.
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Theorem 2.5.9

Theorem 2.5.9 (continued 3)

Theorem 2.5.9. The points of space which do not lie in a given plane
form two sets such that:

(1) each set is convex, and

(2) any segment joining a point in one set to a point in the other
set intersects the given plane.

Proof (continued). For the convexity of S1, let A1 and A′
1 by two

arbitrary points in S1. ASSUME segment A1A′
1 does not lie entirely in S1.

Then there must be at least one point Q of A1A′
1 (that is, a point between

A1 and A′
1 on the segment) which is either a point of S2 or a point of π.

First, if Q is a point of S2 then as shown above, both segment A1Q and
segment A′

1Q intersect plane π. These points of intersection must be

distinct since one lies on the ray
−−→
QA1 and the other lines on the opposite

ray
−−→
QA′

1. But then the line
←−→
A1A

′
1 intersects plane π in two points and so

by Postulate 5
←−→
A1A

′
1 lies in plane π. But then A1 and A′

1 themselves line
in π, a (first) CONTRADICTION to the fact that A1 and A′

1 are in S1.
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Theorem 2.5.9

Theorem 2.5.9 (continued 4)

Proof (continued). Second, if Q is a point of π then a plane α
containing points A1,A

′
1,O intersects plane π at point Q (remember, Q is

a point of A1A′
1). So planes π and α intersect in some line p by Postulate

6. Since A1, A′
1, and O line in plane α and O is between A1 and A′

1 on
A1A′

1, then by Postulate 12 (The Plane-Separation Postulate) A1 and A′
1

are on opposite sides of p in plane α. Now point O is also in plane α and
not on line p, so either O and A1 are on opposite sides of p, or O and A′

1

are on opposite sides of p. So either OA1 or OA′
1 intersects line p and

hence intersects plane π, but this is a (second) CONTRADICTION to the
fact that A1 and A′

1 are in S1. So the assumption that segment A1A′
1 does

not lie entirely in S1 is false and hence every point of A1A′
1 must be a

point of S1. Since A1 and A′
1 are arbitrary points of S1, we have that S1 is

a convex set, as claimed. “By an almost identical argument” (as Wylie
states on page 66) we can show that S2 is also convex, as claimed.
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Theorem 2.5.10

Theorem 2.5.10

Theorem 2.5.10. If V is any point on the edge of a halfplane H and if A,
B, and X are three points in the union of H and its edge such that:

(1) no two of the points A,B,X are collinear with V and

(2) A and B lie on opposite sides of
←→
VX ,

then A and X lie on the same side of
←→
VB, and B and X lie on the same

side of
←→
VA.

Proof. Since points A,B,X
lie in the union of H and its
edge, and since this set is
convex by Exercise 2.5.A, then
AX lies in the union of H
and its edge. Since V is on
the edge of H, and B is in

H, then ray
−→
VB lies in the

union of H and its edge by Exercise 2.5.B.

() Foundations of Geometry November 5, 2021 15 / 17



Theorem 2.5.10

Theorem 2.5.10

Theorem 2.5.10. If V is any point on the edge of a halfplane H and if A,
B, and X are three points in the union of H and its edge such that:

(1) no two of the points A,B,X are collinear with V and

(2) A and B lie on opposite sides of
←→
VX ,

then A and X lie on the same side of
←→
VB, and B and X lie on the same

side of
←→
VA.

Proof. Since points A,B,X
lie in the union of H and its
edge, and since this set is
convex by Exercise 2.5.A, then
AX lies in the union of H
and its edge. Since V is on
the edge of H, and B is in

H, then ray
−→
VB lies in the

union of H and its edge by Exercise 2.5.B.

() Foundations of Geometry November 5, 2021 15 / 17



Theorem 2.5.10

Theorem 2.5.10

Theorem 2.5.10. If V is any point on the edge of a halfplane H and if A,
B, and X are three points in the union of H and its edge such that:

(1) no two of the points A,B,X are collinear with V and

(2) A and B lie on opposite sides of
←→
VX ,

then A and X lie on the same side of
←→
VB, and B and X lie on the same

side of
←→
VA.

Proof. Since points A,B,X
lie in the union of H and its
edge, and since this set is
convex by Exercise 2.5.A, then
AX lies in the union of H
and its edge. Since V is on
the edge of H, and B is in

H, then ray
−→
VB lies in the

union of H and its edge by Exercise 2.5.B.

() Foundations of Geometry November 5, 2021 15 / 17



Theorem 2.5.10

Theorem 2.5.10 (continued 1)

Proof (continued). If AX and
←→
VB intersect, then their intersection must

be a point on
−→
VB (and not on the ray opposite to

−→
VB since the only point

of this ray in the union of H and its edge is V by Exercise 2.5.C); notice
that we do not have A,X ,B collinear so the point of intersection cannot

by V . But we have that points A and B are on opposite sides of
←→
VX by

hypothesis. Hence, with the exception of the distinct points V and X , AX

and
−→
VB lie on opposite sides of

←→
VX by Exercise 2.5.C, and therefore can

have no point in common.
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VB since the only point

of this ray in the union of H and its edge is V by Exercise 2.5.C); notice
that we do not have A,X ,B collinear so the point of intersection cannot

by V . But we have that points A and B are on opposite sides of
←→
VX by

hypothesis. Hence, with the exception of the distinct points V and X , AX

and
−→
VB lie on opposite sides of

←→
VX by Exercise 2.5.C, and therefore can

have no point in common.
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Theorem 2.5.10

Theorem 2.5.10 (continued 2)

Proof (continued). Thus, since AX can intersect neither the ray
−→
VB nor

the ray opposite to
−→
VB, then points A and X are on the same side of

←→
VB.

Finally, an identical argument shows that B and X lie on the same side of←→
VA, as asserted.
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