## Foundations of Geometry

#### Chapter 2. Euclidean Geometry

2.6. Angles and Angle Measurement—Proofs of Theorems



#### Table of contents

1 Theorem 2.6.3. The Angle-Construction Theorem

### Theorem 2.6.3

**Theorem 2.6.3. The Angle-Construction Theorem.** If H is a halfplane whose edge contains the ray  $\overrightarrow{VA}$  and if r is any number (strictly) between 0 and R, there is a unique ray  $\overrightarrow{VX}$  such that X is in H and  $m_R \angle AVX = r$ .

**Proof.** Let H be a halfplane whose edge contains the ray  $V\!A$  and let r is any number (strictly) between 0 and R. By the Protractor Postulate (Postulate 15), there is a one-to-one correspondence between all numbers x for which  $0 \le x \le R$  and the set of rays  $\overrightarrow{VX}$  which lie in the union of H and its edge, so there is a ray  $\overrightarrow{VX}$  which corresponds to r.

### Theorem 2.6.3

**Theorem 2.6.3.** The Angle-Construction Theorem. If H is a halfplane whose edge contains the ray  $\overrightarrow{VA}$  and if r is any number (strictly) between 0 and R, there is a unique ray  $\overrightarrow{VX}$  such that X is in H and  $m_R \angle AVX = r$ .

**Proof.** Let H be a halfplane whose edge contains the ray  $\overrightarrow{VA}$  and let r is any number (strictly) between 0 and R. By the Protractor Postulate (Postulate 15), there is a one-to-one correspondence between all numbers x for which  $0 \le x \le R$  and the set of rays  $\overrightarrow{VX}$  which lie in the union of H and its edge, so there is a ray  $\overrightarrow{VX}$  which corresponds to r. In the Protractor Postulate, VA corresponds to the number 0 (by part (1) of the postulate) and the ray opposite VA corresponds the number R. Since the correspondence is one-to-one and 0 < r < R then the ray VX cannot coincide with either ray VA nor the ray opposite VA. Therefore point Xmust lie in halfplane H (and not in the edge of the halfplane), as claimed.

3 / 4

#### Theorem 2.6.3

**Theorem 2.6.3.** The Angle-Construction Theorem. If H is a halfplane whose edge contains the ray  $\overrightarrow{VA}$  and if r is any number (strictly) between 0 and R, there is a unique ray  $\overrightarrow{VX}$  such that X is in H and  $m_R \angle AVX = r$ .

**Proof.** Let H be a halfplane whose edge contains the ray VA and let r is any number (strictly) between 0 and R. By the Protractor Postulate (Postulate 15), there is a one-to-one correspondence between all numbers x for which  $0 \le x \le R$  and the set of rays  $\overrightarrow{VX}$  which lie in the union of H and its edge, so there is a ray  $\overrightarrow{VX}$  which corresponds to r. In the Protractor Postulate,  $\overrightarrow{VA}$  corresponds to the number 0 (by part (1) of the postulate) and the ray opposite VA corresponds the number R. Since the correspondence is one-to-one and 0 < r < R then the ray  $\overrightarrow{VX}$  cannot coincide with either ray VA nor the ray opposite VA. Therefore point Xmust lie in halfplane H (and not in the edge of the halfplane), as claimed.

# Theorem 2.6.3. The Angle-Construction Theorem (continued)

**Theorem 2.6.3.** The Angle-Construction Theorem. If H is a halfplane whose edge contains the ray  $\overrightarrow{VA}$  and if r is any number (strictly) between 0 and R, there is a unique ray  $\overrightarrow{VX}$  such that X is in H and  $m_R \angle AVX = r$ .

**Proof (continued).** Now suppose  $\overrightarrow{VY}$  is a ray, where Y is in halfplane H, which also corresponds to the number r in the one-to-one correspondence of the Protractor Postulate. Since this correspondence is one-to-one, then it must be that ray  $\overrightarrow{VY}$  is the same as the ray  $\overrightarrow{VX}$ ; that is, ray  $\overrightarrow{VX}$  corresponding to number r is unique.