Foundations of Geometry

Chapter 2. Euclidean Geometry

2.6. Angles and Angle Measurement-Proofs of Theorems

Table of contents

(1) Theorem 2.6.3. The Angle-Construction Theorem

Theorem 2.6.3

Theorem 2.6.3. The Angle-Construction Theorem. If H is a halfplane whose edge contains the ray $\overrightarrow{V A}$ and if r is any number (strictly) between 0 and R, there is a unique ray $\overrightarrow{V X}$ such that X is in H and $m_{R} \angle A V X=r$.

Proof. Let H be a halfplane whose edge contains the ray VA and let r is any number (strictly) between 0 and R. By the Protractor Postulate (Postulate 15), there is a one-to-one correspondence between all numbers x for which $0 \leq x \leq R$ and the set of rays $V X$ which lie in the union of H and its edge, so there is a ray $\overrightarrow{V X}$ which corresponds to r.

Theorem 2.6.3

Theorem 2.6.3. The Angle-Construction Theorem. If H is a halfplane whose edge contains the ray $\overrightarrow{V A}$ and if r is any number (strictly) between 0 and R, there is a unique ray $\overrightarrow{V X}$ such that X is in H and $m_{R} \angle A V X=r$.

Proof. Let H be a halfplane whose edge contains the ray $\overrightarrow{V A}$ and let r is any number (strictly) between 0 and R. By the Protractor Postulate (Postulate 15), there is a one-to-one correspondence between all numbers x for which $0 \leq x \leq R$ and the set of rays $\overrightarrow{V X}$ which lie in the union of H and its edge, so there is a ray $\overrightarrow{V X}$ which corresponds to r. In the
Protractor Postulate, $\overrightarrow{V A}$ corresponds to the number 0 (by part (1) of the postulate) and the ray opposite VA corresponds the number R. Since the correspondence is one-to-one and $0<r<R$ then the ray $V X$ cannot coincide with either ray VA nor the ray opposite VA. Therefore point X must lie in halfplane H (and not in the edge of the halfplane), as claimed

Theorem 2.6.3

Theorem 2.6.3. The Angle-Construction Theorem. If H is a halfplane whose edge contains the ray $\overrightarrow{V A}$ and if r is any number (strictly) between 0 and R, there is a unique ray $\overrightarrow{V X}$ such that X is in H and $m_{R} \angle A V X=r$.

Proof. Let H be a halfplane whose edge contains the ray $\overrightarrow{V A}$ and let r is any number (strictly) between 0 and R. By the Protractor Postulate (Postulate 15), there is a one-to-one correspondence between all numbers x for which $0 \leq x \leq R$ and the set of rays $\overrightarrow{V X}$ which lie in the union of H and its edge, so there is a ray $\overrightarrow{V X}$ which corresponds to r. In the Protractor Postulate, $\overrightarrow{V A}$ corresponds to the number 0 (by part (1) of the postulate) and the ray opposite $\overrightarrow{V A}$ corresponds the number R. Since the correspondence is one-to-one and $0<r<R$ then the ray $\overrightarrow{V X}$ cannot coincide with either ray $\overrightarrow{V A}$ nor the ray opposite $\overrightarrow{V A}$. Therefore point X must lie in halfplane H (and not in the edge of the halfplane), as claimed.

Theorem 2.6.3. The Angle-Construction Theorem (continued)

Theorem 2.6.3. The Angle-Construction Theorem. If H is a halfplane whose edge contains the ray $\overrightarrow{V A}$ and if r is any number (strictly) between 0 and R, there is a unique ray $\overrightarrow{V X}$ such that X is in H and $m_{R} \angle A V X=r$.

Proof (continued). Now suppose $\overrightarrow{V Y}$ is a ray, where Y is in halfplane H, which also corresponds to the number r in the one-to-one correspondence of the Protractor Postulate. Since this correspondence is one-to-one, then it must be that ray $\overrightarrow{V Y}$ is the same as the ray $\overrightarrow{V X}$; that is, ray $\overrightarrow{V X}$ corresponding to number r is unique.

