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Theorem 2.7.1

Theorem 2.7.1

Theorem 2.7.1. The interior of ∠AVB is the intersection of the halfplane

determined by
←→
VA and B and the halfplane determined by

←→
VB and A.

Proof. Let S1 be the interior of ∠AVB; that is,
S1 = {X |

−→
VX lies between

−→
VA and

−→
VB}, and let S2 be the intersection of

the halfplane determined by
←→
VA and B and the halfplane determined by←→

VB and A.

Let X ∈ S1, so that
−→
VX lies between

−→
VA and

−→
VB. Then by the Definition

2.6.2, there is a halfplane H such that:

(1) the edge of the halfplane H contains V ,

(2) the points Z ,B,X lie in the union of H and its edge,

(3) no two of the points Z ,B,X are collinear with V , and

(4) m∠AVX + m∠XVB = m∠AVB.
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Theorem 2.7.1

Theorem 2.7.1 (continued 1)

Proof (continued). ASSUME that points A and B are on the same side

of
←→
VX . Then by the Protractor Postulate (Postulate 15), there exists a

one-to-one correspondence between the interval [0,R] and the rays in a

halfplane and its boundary which assigns to
−→
VX the number 0 and assigns

to
−→
VA and

−→
VB numbers a > 0 and b > 0, respectively, such that

m∠AVX = |a− x | = a, m∠XVB = |b − 0| = b, and m∠AVB = |b − a|.
Then by (4) from above, we have a + b = |b − a|, a CONTRADICTION
since this holds for no positive a and b. Therefore the assumption that A

and B are on the same side of
←→
VX is false, and hence so A and B lie on

opposite sides of
←→
VX .

Now by Theorem 2.5.10, A and X lie on the same

side of
←→
VB, and B and X lie on the same side of

←→
VA. That is, X is in both

the halfplane determined by
←→
VA and B, and in the halfplane determined by←→

VB and A. So X ∈ S2 and hence S1 ⊂ S2.
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Theorem 2.7.1

Theorem 2.7.1 (continued 2)

Proof (continued). Next, suppose X ∈ S2; that is, X is in the

intersection of the halfplane determined by
←→
VA and B and the halfplane

determined by
←→
VB and A. In this case X lies on the same side of

←→
VA as B,

and on the same side of
←→
VB as A. So by the Protractor Postulate

(Postulate 15), there is a first one-to-one correspondence between the
interval [0,R] and the rays in a halfplane and its boundary which assigns

to
−→
VA the number 0, assigns to

−→
VB the number b, and assigns to

−→
VX the

number x such that m∠AVB = |b − 0| = b, m∠AVX = |x − 0| = x , and
m∠BVX = |b − x | (see Figure 2.16(a)). Also by the Protractor Postulate
(Postulate 15), there is a second one-to-one correspondence between the
interval [0,R] and the rays in a halfplane and its boundary which assigns

to
−→
VA the number a′, assigns to

−→
VB the number 0, and assigns to

−→
VX the

number x ′ such that m∠AVB = |a′ − 0| = a′, m∠AVX = |a′ − x ′|, and
m∠BVX = |x ′ − 0| = x ′ (see Figure 2.16(b)).
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Theorem 2.7.1

Theorem 2.7.1 (continued 3)

Proof (continued).

Figure 2.16

Of course, either b < x or b > x . If b < x then by the first
correspondence m∠BVX = |b − x | = x − b and so
m∠AVB + b∠BVX = b + (x − b) = x = m∠AVX . But in the second
correspondence, this relationship becomes
m∠AVB + b∠BVX = a′ + x ′ = |a′ − x ′| = m∠AVX and so we must have
a′ + x ′ = |a′ − x ′|. But this for no positive a′ and x ′ and we cannot have
b < x , so that we must have b > x .
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Theorem 2.7.1

Theorem 2.7.1 (continued 4)

Theorem 2.7.1. The interior of ∠AVB is the intersection of the halfplane

determined by
←→
VA and B and the halfplane determined by

←→
VB and A.

Proof (continued). With b > x we have by the first correspondence that
m∠BVX = |b − x | = b − x . Also by the first correspondence,
m∠AVX + m∠XVB = x + (b − x) = b = m∠AVB so, by Definition 2.6.2,

ray
−→
VX lies between rays

−→
VA and

−→
VB. Therefore X ∈ S1 and we have

S2 ⊂ S1.

Therefore, S1 = S2. That is, the interior of ∠AVB (set S1) is the

intersection of the halfplane determined by
←→
VA and B and the halfplane

determined by
←→
VB and A (set S2), as claimed.
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Theorem 2.7.2

Theorem 2.7.2

Theorem 2.7.2. The interior of an angle is a convex set.

Proof. A halfplane is a convex set by definition (see the Plane-Separation
Postulate, Postulate 12). By Theorem 2.7.1, the interior of an angle is the
intersection of two halfplanes. By Theorem 2.5.7, the intersection of two
convex sets is a convex set. Therefore, the interior of an angle is a convex
set, as claimed.

() Foundations of Geometry November 11, 2021 8 / 11



Theorem 2.7.2

Theorem 2.7.2

Theorem 2.7.2. The interior of an angle is a convex set.

Proof. A halfplane is a convex set by definition (see the Plane-Separation
Postulate, Postulate 12). By Theorem 2.7.1, the interior of an angle is the
intersection of two halfplanes. By Theorem 2.5.7, the intersection of two
convex sets is a convex set. Therefore, the interior of an angle is a convex
set, as claimed.

() Foundations of Geometry November 11, 2021 8 / 11



Theorem 2.7.3

Theorem 2.7.3

Theorem 2.7.3. If on each side of an angle a point other than the vertex
is selected, every point between these points is in the interior of the angle.
Proof. Let V be the vertex of the
given angle. Let A be a point on one
side of the angle and let point B a
point on the other side of the angle
(where A and B are distinct from V ).
Let P be any point between A and B
(see Figure 2.17).

For three collinear
points, only one can be between the
other two and since P is between A and B, then B cannot be between A
and P. So the segment AP does not intersect the line

←→
VB (line

←→
AP

intersects
←→
VB at point B, so there can be no second point of intersection

of these two lines). So points P and A lie on the same side of
←→
VB.

Similarly, points P and B lie on the same side of
←→
VA. Therefore, by

Theorem 2.7.1, P lies in the interior of the angle, as claimed.
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Theorem 2.7.10

Theorem 2.7.10

Theorem 2.7.10. At each point of a given line there is one and only one
line which is perpendicular to the given line and lies in a given plane
containing the line.

Proof. Let P be a point on line `, let
π be a plane containing `, and let A
be a point on ` distinct from P. By the
Plane-Separation Postulate (Postulate
12), line ` determines two halfplanes
of π. Let H be one of these halfplanes.
By the Angle-Construction Theorem
(Theorem 2.6.3), there is a unique ray
−→
PQ such that ∠APQ is a right angle.

Therefore, by definition,
←→
PQ ⊥

←→
PA. See Figure 2.21 above.
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Theorem 2.7.10

Theorem 2.7.10 (continued)

Theorem 2.7.10. At each point of a given line there is one and only one
line which is perpendicular to the given line and lies in a given plane
containing the line.

Proof (continued). For uniqueness, we need to consider the other

halfplane H ′ determined by `. There is a unique ray
−−→
PQ ′ such that ∠APQ ′

is a right angle. Hence, by definition,
←→
PQ ′ ⊥

←→
PA. To complete the proof,

we must show that
←→
PQ and

←→
PQ ′ are the same line. We do so by showing

that Q, P, and Q ′ are collinear. Since ∠QPA and ∠APQ ′ are

supplementary adjacent angles, then by Theorem 2.7.6 rays
−→
PQ and

−−→
PQ ′

form a linear pair, and hence Q, P, and Q ′ are collinear. That is, the lines
←→
PQ and

←→
PQ ′ are the same and we therefore have uniqueness.
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