Foundations of Geometry

Chapter 2. Euclidean Geometry 2.7. Further Properties of Angles—Proofs of Theorems

Theorem 2.7.1. The interior of $\angle AVB$ is the intersection of the halfplane determined by \overleftarrow{VA} and B and the halfplane determined by \overleftarrow{VB} and A.

Proof. Let S_1 be the interior of $\angle AVB$; that is, $S_1 = \{X \mid \overrightarrow{VX} \text{ lies between } \overrightarrow{VA} \text{ and } \overrightarrow{VB}\}$, and let S_2 be the intersection of the halfplane determined by \overleftarrow{VA} and B and the halfplane determined by \overleftarrow{VB} and A.

Theorem 2.7.1. The interior of $\angle AVB$ is the intersection of the halfplane determined by \overleftarrow{VA} and B and the halfplane determined by \overleftarrow{VB} and A.

Proof. Let S_1 be the interior of $\angle AVB$; that is, $S_1 = \{X \mid \overrightarrow{VX} \text{ lies between } \overrightarrow{VA} \text{ and } \overrightarrow{VB}\}$, and let S_2 be the intersection of the halfplane determined by \overrightarrow{VA} and B and the halfplane determined by \overrightarrow{VB} and A.

Let $X \in S_1$, so that \overrightarrow{VX} lies between \overrightarrow{VA} and \overrightarrow{VB} . Then by the Definition 2.6.2, there is a halfplane H such that:

(1) the edge of the halfplane H contains V,

(2) the points Z, B, X lie in the union of H and its edge,

(3) no two of the points Z, B, X are collinear with V, and

(4) $m \angle AVX + m \angle XVB = m \angle AVB$.

Theorem 2.7.1. The interior of $\angle AVB$ is the intersection of the halfplane determined by \overleftarrow{VA} and B and the halfplane determined by \overleftarrow{VB} and A.

Proof. Let S_1 be the interior of $\angle AVB$; that is, $S_1 = \{X \mid \overrightarrow{VX} \text{ lies between } \overrightarrow{VA} \text{ and } \overrightarrow{VB}\}$, and let S_2 be the intersection of the halfplane determined by \overrightarrow{VA} and B and the halfplane determined by \overrightarrow{VB} and A.

Let $X \in S_1$, so that \overrightarrow{VX} lies between \overrightarrow{VA} and \overrightarrow{VB} . Then by the Definition 2.6.2, there is a halfplane H such that:

(1) the edge of the halfplane H contains V,

(2) the points Z, B, X lie in the union of H and its edge,

(3) no two of the points Z, B, X are collinear with V, and

(4) $m \angle AVX + m \angle XVB = m \angle AVB$.

Theorem 2.7.1 (continued 1)

Proof (continued). ASSUME that points A and B are on the same side of \overrightarrow{VX} . Then by the Protractor Postulate (Postulate 15), there exists a one-to-one correspondence between the interval [0, R] and the rays in a halfplane and its boundary which assigns to \overrightarrow{VX} the number 0 and assigns to \overrightarrow{VA} and \overrightarrow{VB} numbers a > 0 and b > 0, respectively, such that $m \angle AVX = |a - x| = a$, $m \angle XVB = |b - 0| = b$, and $m \angle AVB = |b - a|$. Then by (4) from above, we have a + b = |b - a|, a CONTRADICTION since this holds for no positive a and b. Therefore the assumption that Aand B are on the same side of VX is false, and hence so A and B lie on opposite sides of VX.

Theorem 2.7.1 (continued 1)

Proof (continued). ASSUME that points A and B are on the same side of \overrightarrow{VX} . Then by the Protractor Postulate (Postulate 15), there exists a one-to-one correspondence between the interval [0, R] and the rays in a halfplane and its boundary which assigns to \overrightarrow{VX} the number 0 and assigns to \overrightarrow{VA} and \overrightarrow{VB} numbers a > 0 and b > 0, respectively, such that $m \angle AVX = |a - x| = a$, $m \angle XVB = |b - 0| = b$, and $m \angle AVB = |b - a|$. Then by (4) from above, we have a + b = |b - a|, a CONTRADICTION since this holds for no positive a and b. Therefore the assumption that Aand B are on the same side of VX is false, and hence so A and B lie on opposite sides of \overrightarrow{VX} . Now by Theorem 2.5.10, A and X lie on the same side of \overrightarrow{VB} , and B and X lie on the same side of \overrightarrow{VA} . That is, X is in both the halfplane determined by \overrightarrow{VA} and B, and in the halfplane determined by VB' and A. So $X \in S_2$ and hence $S_1 \subset S_2$.

Theorem 2.7.1 (continued 1)

Proof (continued). ASSUME that points A and B are on the same side of \overrightarrow{VX} . Then by the Protractor Postulate (Postulate 15), there exists a one-to-one correspondence between the interval [0, R] and the rays in a halfplane and its boundary which assigns to \overrightarrow{VX} the number 0 and assigns to \overrightarrow{VA} and \overrightarrow{VB} numbers a > 0 and b > 0, respectively, such that $m \angle AVX = |a - x| = a$, $m \angle XVB = |b - 0| = b$, and $m \angle AVB = |b - a|$. Then by (4) from above, we have a + b = |b - a|, a CONTRADICTION since this holds for no positive a and b. Therefore the assumption that Aand B are on the same side of VX is false, and hence so A and B lie on opposite sides of \overrightarrow{VX} . Now by Theorem 2.5.10, A and X lie on the same side of \overrightarrow{VB} , and B and X lie on the same side of \overrightarrow{VA} . That is, X is in both the halfplane determined by \overrightarrow{VA} and B, and in the halfplane determined by \overrightarrow{VB} and A. So $X \in S_2$ and hence $S_1 \subset S_2$.

Theorem 2.7.1 (continued 2)

Proof (continued). Next, suppose $X \in S_2$; that is, X is in the intersection of the halfplane determined by \overleftrightarrow{VA} and B and the halfplane determined by \overrightarrow{VB} and A. In this case X lies on the same side of \overrightarrow{VA} as B, and on the same side of \overleftrightarrow{VB} as A. So by the Protractor Postulate (Postulate 15), there is a first one-to-one correspondence between the interval [0, R] and the rays in a halfplane and its boundary which assigns to \overrightarrow{VA} the number 0, assigns to \overrightarrow{VB} the number b, and assigns to \overrightarrow{VX} the number x such that $m \angle AVB = |b - 0| = b$, $m \angle AVX = |x - 0| = x$, and $m \angle BVX = |b - x|$ (see Figure 2.16(a)). Also by the Protractor Postulate (Postulate 15), there is a second one-to-one correspondence between the interval [0, R] and the rays in a halfplane and its boundary which assigns to VA the number a', assigns to VB the number 0, and assigns to VX the number x' such that $m \angle AVB = |a' - 0| = a'$, $m \angle AVX = |a' - x'|$, and $m \angle BVX = |x' - 0| = x'$ (see Figure 2.16(b)).

Theorem 2.7.1 (continued 2)

Proof (continued). Next, suppose $X \in S_2$; that is, X is in the intersection of the halfplane determined by \overleftrightarrow{VA} and B and the halfplane determined by \overrightarrow{VB} and A. In this case X lies on the same side of \overrightarrow{VA} as B, and on the same side of \overleftrightarrow{VB} as A. So by the Protractor Postulate (Postulate 15), there is a first one-to-one correspondence between the interval [0, R] and the rays in a halfplane and its boundary which assigns to \overrightarrow{VA} the number 0, assigns to \overrightarrow{VB} the number b, and assigns to \overrightarrow{VX} the number x such that $m \angle AVB = |b - 0| = b$, $m \angle AVX = |x - 0| = x$, and $m \angle BVX = |b - x|$ (see Figure 2.16(a)). Also by the Protractor Postulate (Postulate 15), there is a second one-to-one correspondence between the interval [0, R] and the rays in a halfplane and its boundary which assigns to \overrightarrow{VA} the number a', assigns to \overrightarrow{VB} the number 0, and assigns to \overrightarrow{VX} the number x' such that $m \angle AVB = |a' - 0| = a'$, $m \angle AVX = |a' - x'|$, and $m \angle BVX = |x' - 0| = x'$ (see Figure 2.16(b)).

Theorem 2.7.1 (continued 3)

Proof (continued).

Of course, either b < x or b > x. If b < x then by the first correspondence $m \angle BVX = |b - x| = x - b$ and so $m \angle AVB + b \angle BVX = b + (x - b) = x = m \angle AVX$. But in the second correspondence, this relationship becomes $m \angle AVB + b \angle BVX = a' + x' = |a' - x'| = m \angle AVX$ and so we must have a' + x' = |a' - x'|. But this for no positive a' and x' and we cannot have b < x, so that we must have b > x.

Theorem 2.7.1 (continued 4)

Theorem 2.7.1. The interior of $\angle AVB$ is the intersection of the halfplane determined by \overleftarrow{VA} and B and the halfplane determined by \overleftarrow{VB} and A.

Proof (continued). With b > x we have by the first correspondence that $m \angle BVX = |b - x| = b - x$. Also by the first correspondence, $m \angle AVX + m \angle XVB = x + (b - x) = b = m \angle AVB$ so, by Definition 2.6.2, ray \overrightarrow{VX} lies between rays \overrightarrow{VA} and \overrightarrow{VB} . Therefore $X \in S_1$ and we have $S_2 \subset S_1$.

Therefore, $S_1 = S_2$. That is, the interior of $\angle AVB$ (set S_1) is the intersection of the halfplane determined by \overleftrightarrow{VA} and B and the halfplane determined by \overleftrightarrow{VB} and A (set S_2), as claimed.

Theorem 2.7.1 (continued 4)

Theorem 2.7.1. The interior of $\angle AVB$ is the intersection of the halfplane determined by \overleftarrow{VA} and B and the halfplane determined by \overleftarrow{VB} and A.

Proof (continued). With b > x we have by the first correspondence that $m \angle BVX = |b - x| = b - x$. Also by the first correspondence, $m \angle AVX + m \angle XVB = x + (b - x) = b = m \angle AVB$ so, by Definition 2.6.2, ray \overrightarrow{VX} lies between rays \overrightarrow{VA} and \overrightarrow{VB} . Therefore $X \in S_1$ and we have $S_2 \subset S_1$.

Therefore, $S_1 = S_2$. That is, the interior of $\angle AVB$ (set S_1) is the intersection of the halfplane determined by \overleftrightarrow{VA} and B and the halfplane determined by \overleftrightarrow{VB} and A (set S_2), as claimed.

Theorem 2.7.2. The interior of an angle is a convex set.

Proof. A halfplane is a convex set by definition (see the Plane-Separation Postulate, Postulate 12). By Theorem 2.7.1, the interior of an angle is the intersection of two halfplanes. By Theorem 2.5.7, the intersection of two convex sets is a convex set. Therefore, the interior of an angle is a convex set, as claimed.

Theorem 2.7.2. The interior of an angle is a convex set.

Proof. A halfplane is a convex set by definition (see the Plane-Separation Postulate, Postulate 12). By Theorem 2.7.1, the interior of an angle is the intersection of two halfplanes. By Theorem 2.5.7, the intersection of two convex sets is a convex set. Therefore, the interior of an angle is a convex set, as claimed.

Theorem 2.7.3. If on each side of an angle a point other than the vertex is selected, every point between these points is in the interior of the angle.

Proof. Let V be the vertex of the given angle. Let A be a point on one side of the angle and let point B a point on the other side of the angle (where A and B are distinct from V). Let P be any point between A and B (see Figure 2.17).

Theorem 2.7.3. If on each side of an angle a point other than the vertex is selected, every point between these points is in the interior of the angle.

Proof. Let V be the vertex of the given angle. Let A be a point on one side of the angle and let point B a point on the other side of the angle (where A and B are distinct from V). Let P be any point between A and B (see Figure 2.17). For three collinear points, only one can be between the

other two and since P is between A and B, then B cannot be between A and P. So the segment \overline{AP} does not intersect the line \overrightarrow{VB} (line \overrightarrow{AP} intersects \overrightarrow{VB} at point B, so there can be no second point of intersection of these two lines). So points P and A lie on the same side of \overrightarrow{VB} . Similarly, points P and B lie on the same side of \overrightarrow{VA} . Therefore, by Theorem 2.7.1, P lies in the interior of the angle, as claimed.

0

Theorem 2.7.3. If on each side of an angle a point other than the vertex is selected, every point between these points is in the interior of the angle.

Proof. Let V be the vertex of the given angle. Let A be a point on one side of the angle and let point B a point on the other side of the angle (where A and B are distinct from V). Let P be any point between A and B (see Figure 2.17). For three collinear points, only one can be between the

other two and since P is between A and B, then B cannot be between A and P. So the segment \overline{AP} does not intersect the line \overleftrightarrow{VB} (line \overrightarrow{AP} intersects \overleftrightarrow{VB} at point B, so there can be no second point of intersection of these two lines). So points P and A lie on the same side of \overleftrightarrow{VB} . Similarly, points P and B lie on the same side of \overleftrightarrow{VA} . Therefore, by Theorem 2.7.1, P lies in the interior of the angle, as claimed.

C

Theorem 2.7.10. At each point of a given line there is one and only one line which is perpendicular to the given line and lies in a given plane containing the line.

Proof. Let *P* be a point on line ℓ , let π be a plane containing ℓ , and let *A* be a point on ℓ distinct from *P*. By the Plane-Separation Postulate (Postulate 12), line ℓ determines two halfplanes of π . Let *H* be one of these halfplanes. By the Angle-Construction Theorem (Theorem 2.6.3), there is a unique ray \overrightarrow{PQ} such that $\angle APQ$ is a right angle. Therefore, by definition, $\overrightarrow{PQ} \perp \overrightarrow{PA}$. See Figure 2.21 above.

Theorem 2.7.10. At each point of a given line there is one and only one line which is perpendicular to the given line and lies in a given plane containing the line.

Proof. Let P be a point on line ℓ , let π be a plane containing ℓ , and let A be a point on ℓ distinct from *P*. By the Plane-Separation Postulate (Postulate Р 12), line ℓ determines two halfplanes of π . Let *H* be one of these halfplanes. By the Angle-Construction Theorem (Theorem 2.6.3), there is a unique ray \overrightarrow{PQ} such that $\angle APQ$ is a right angle. Therefore, by definition, $\overrightarrow{PQ} \perp \overrightarrow{PA}$. See Figure 2.21 above.

Theorem 2.7.10. At each point of a given line there is one and only one line which is perpendicular to the given line and lies in a given plane containing the line.

Proof. Let P be a point on line ℓ , let π be a plane containing ℓ , and let A be a point on ℓ distinct from *P*. By the Plane-Separation Postulate (Postulate Р 12), line ℓ determines two halfplanes of π . Let *H* be one of these halfplanes. By the Angle-Construction Theorem (Theorem 2.6.3), there is a unique ray \overrightarrow{PQ} such that $\angle APQ$ is a right angle. Therefore, by definition, $\overrightarrow{PQ} \perp \overrightarrow{PA}$. See Figure 2.21 above.

Theorem 2.7.10 (continued)

Theorem 2.7.10. At each point of a given line there is one and only one line which is perpendicular to the given line and lies in a given plane containing the line.

Proof (continued). For uniqueness, we need to consider the other halfplane H' determined by ℓ . There is a unique ray $\overrightarrow{PQ'}$ such that $\angle APQ'$ is a right angle. Hence, by definition, $\overrightarrow{PQ'} \perp \overrightarrow{PA}$. To complete the proof, we must show that \overrightarrow{PQ} and $\overrightarrow{PQ'}$ are the same line. We do so by showing that Q, P, and Q' are collinear. Since $\angle QPA$ and $\angle APQ'$ are supplementary adjacent angles, then by Theorem 2.7.6 rays \overrightarrow{PQ} and $\overrightarrow{PQ'}$ form a linear pair, and hence Q, P, and Q' are collinear. That is, the lines \overrightarrow{PQ} and $\overrightarrow{PQ'}$ are the same and we therefore have uniqueness.