Foundations of Geometry

Chapter 2. Euclidean Geometry

2.7. Further Properties of Angles-Proofs of Theorems

Table of contents

(1) Theorem 2.7.1
(2) Theorem 2.7.2
(3) Theorem 2.7.3
(4) Theorem 2.7.10

Theorem 2.7.1

Theorem 2.7.1. The interior of $\angle A V B$ is the intersection of the halfplane determined by $\overleftrightarrow{V A}$ and B and the halfplane determined by $\overleftrightarrow{V B}$ and A.

Proof. Let S_{1} be the interior of $\angle A V B$; that is, $S_{1}=\{X \mid \overrightarrow{V X}$ lies between $\overrightarrow{V A}$ and $\overrightarrow{V B}\}$, and let S_{2} be the intersection of the halfplane determined by $V A$ and B and the halfplane determined by $V B$ and A.

Theorem 2.7.1

Theorem 2.7.1. The interior of $\angle A V B$ is the intersection of the halfplane determined by $\overleftrightarrow{V A}$ and B and the halfplane determined by $\overleftrightarrow{V B}$ and A.

Proof. Let S_{1} be the interior of $\angle A V B$; that is, $S_{1}=\{X \mid \overrightarrow{V X}$ lies between $\overrightarrow{V A}$ and $\overrightarrow{V B}\}$, and let S_{2} be the intersection of the halfplane determined by $\overleftrightarrow{V A}$ and B and the halfplane determined by $\overleftrightarrow{V B}$ and A

Let $X \in S_{1}$, so that $\overrightarrow{V X}$ lies between $\overrightarrow{V A}$ and $\overrightarrow{V B}$. Then by the Definition 2.6.2, there is a halfplane H such that:
(1) the edge of the halfplane H contains V,
(2) the points Z, B, X lie in the union of H and its edge,
(3) no two of the points Z, B, X are collinear with V, and
(4) $m \angle A V X+m \angle X V B=m \angle A V B$.

Theorem 2.7.1

Theorem 2.7.1. The interior of $\angle A V B$ is the intersection of the halfplane determined by $\overleftrightarrow{V A}$ and B and the halfplane determined by $\overleftrightarrow{V B}$ and A.

Proof. Let S_{1} be the interior of $\angle A V B$; that is, $S_{1}=\{X \mid \overrightarrow{V X}$ lies between $\overrightarrow{V A}$ and $\overrightarrow{V B}\}$, and let S_{2} be the intersection of the halfplane determined by $\overleftrightarrow{V A}$ and B and the halfplane determined by $\overleftrightarrow{V B}$ and A

Let $X \in S_{1}$, so that $\overrightarrow{V X}$ lies between $\overrightarrow{V A}$ and $\overrightarrow{V B}$. Then by the Definition 2.6.2, there is a halfplane H such that:
(1) the edge of the halfplane H contains V,
(2) the points Z, B, X lie in the union of H and its edge,
(3) no two of the points Z, B, X are collinear with V, and
(4) $m \angle A V X+m \angle X V B=m \angle A V B$.

Theorem 2.7.1 (continued 1)

Proof (continued). ASSUME that points A and B are on the same side of $\overleftrightarrow{V X}$. Then by the Protractor Postulate (Postulate 15), there exists a one-to-one correspondence between the interval $[0, R]$ and the rays in a halfplane and its boundary which assigns to $\overrightarrow{V X}$ the number 0 and assigns to $\overrightarrow{V A}$ and $\overrightarrow{V B}$ numbers $a>0$ and $b>0$, respectively, such that $m \angle A V X=|a-x|=a, m \angle X V B=|b-0|=b$, and $m \angle A V B=|b-a|$. Then by (4) from above, we have $a+b=|b-a|$, a CONTRADICTION since this holds for no positive a and b. Therefore the assumption that A and B are on the same side of $\overleftrightarrow{V X}$ is false, and hence so A and B lie on opposite sides of $\overrightarrow{V X}$.

Theorem 2.7.1 (continued 1)

Proof (continued). ASSUME that points A and B are on the same side of $\overleftrightarrow{V X}$. Then by the Protractor Postulate (Postulate 15), there exists a one-to-one correspondence between the interval $[0, R]$ and the rays in a halfplane and its boundary which assigns to $\overrightarrow{V X}$ the number 0 and assigns to $\overrightarrow{V A}$ and $\overrightarrow{V B}$ numbers $a>0$ and $b>0$, respectively, such that $m \angle A V X=|a-x|=a, m \angle X V B=|b-0|=b$, and $m \angle A V B=|b-a|$. Then by (4) from above, we have $a+b=|b-a|$, a CONTRADICTION since this holds for no positive a and b. Therefore the assumption that A and B are on the same side of $\overleftrightarrow{V X}$ is false, and hence so A and B lie on opposite sides of $\overleftrightarrow{V X}$. Now by Theorem 2.5.10, A and X lie on the same side of $\overrightarrow{V B}$, and B and X lie on the same side of $\overleftrightarrow{V A}$. That is, X is in both the halfplane determined by $\overparen{V A}$ and B, and in the halfplane determined by $\overparen{V B}$ and A. So $X \in S_{2}$ and hence $S_{1} \subset S_{2}$.

Theorem 2.7.1 (continued 1)

Proof (continued). ASSUME that points A and B are on the same side of $\overleftrightarrow{V X}$. Then by the Protractor Postulate (Postulate 15), there exists a one-to-one correspondence between the interval $[0, R]$ and the rays in a halfplane and its boundary which assigns to $\overrightarrow{V X}$ the number 0 and assigns to $\overrightarrow{V A}$ and $\overrightarrow{V B}$ numbers $a>0$ and $b>0$, respectively, such that $m \angle A V X=|a-x|=a, m \angle X V B=|b-0|=b$, and $m \angle A V B=|b-a|$. Then by (4) from above, we have $a+b=|b-a|$, a CONTRADICTION since this holds for no positive a and b. Therefore the assumption that A and B are on the same side of $\overleftrightarrow{V X}$ is false, and hence so A and B lie on opposite sides of $\overleftrightarrow{V X}$. Now by Theorem 2.5.10, A and X lie on the same side of $\overleftrightarrow{V B}$, and B and X lie on the same side of $\overleftrightarrow{V A}$. That is, X is in both the halfplane determined by $\overleftrightarrow{V A}$ and B, and in the halfplane determined by $\overleftrightarrow{V B}$ and A. So $X \in S_{2}$ and hence $S_{1} \subset S_{2}$.

Theorem 2.7.1 (continued 2)

Proof (continued). Next, suppose $X \in S_{2}$; that is, X is in the intersection of the halfplane determined by $\overleftrightarrow{V A}$ and B and the halfplane determined by $\overleftrightarrow{V B}$ and A. In this case X lies on the same side of $\overleftrightarrow{V A}$ as B, and on the same side of $\overleftrightarrow{V B}$ as A. So by the Protractor Postulate (Postulate 15), there is a first one-to-one correspondence between the interval $[0, R]$ and the rays in a halfplane and its boundary which assigns to $\overrightarrow{V A}$ the number 0 , assigns to $\overrightarrow{V B}$ the number b, and assigns to $\overrightarrow{V X}$ the number x such that $m \angle A V B=|b-0|=b, m \angle A V X=|x-0|=x$, and $m \angle B V X=|b-x|$ (see Figure 2.16(a)). Also by the Protractor Postulate (Postulate 15), there is a second one-to-one correspondence between the interval $[0, R]$ and the rays in a halfplane and its boundary which assigns to $\overrightarrow{V A}$ the number a^{\prime}, assigns to $\overrightarrow{V B}$ the number 0 , and assigns to $\overrightarrow{V X}$ the number x^{\prime} such that $m \angle A V B=\left|a^{\prime}-0\right|=a^{\prime}, m \angle A V X=\left|a^{\prime}-x^{\prime}\right|$, and $m \angle B V X=\left|x^{\prime}-0\right|=x^{\prime}($ see Figure 2.16(b))

Theorem 2.7.1 (continued 2)

Proof (continued). Next, suppose $X \in S_{2}$; that is, X is in the intersection of the halfplane determined by $\overleftrightarrow{V A}$ and B and the halfplane determined by $\overleftrightarrow{V B}$ and A. In this case X lies on the same side of $\overleftrightarrow{V A}$ as B, and on the same side of $\overleftrightarrow{V B}$ as A. So by the Protractor Postulate (Postulate 15), there is a first one-to-one correspondence between the interval $[0, R]$ and the rays in a halfplane and its boundary which assigns to $\overrightarrow{V A}$ the number 0 , assigns to $\overrightarrow{V B}$ the number b, and assigns to $\overrightarrow{V X}$ the number x such that $m \angle A V B=|b-0|=b, m \angle A V X=|x-0|=x$, and $m \angle B V X=|b-x|$ (see Figure 2.16(a)). Also by the Protractor Postulate (Postulate 15), there is a second one-to-one correspondence between the interval $[0, R]$ and the rays in a halfplane and its boundary which assigns to $\overrightarrow{V A}$ the number a^{\prime}, assigns to $\overrightarrow{V B}$ the number 0 , and assigns to $\overrightarrow{V X}$ the number x^{\prime} such that $m \angle A V B=\left|a^{\prime}-0\right|=a^{\prime}, m \angle A V X=\left|a^{\prime}-x^{\prime}\right|$, and $m \angle B V X=\left|x^{\prime}-0\right|=x^{\prime}$ (see Figure 2.16(b)).

Theorem 2.7.1 (continued 3)

Proof (continued).

Of course, either $b<x$ or $b>x$. If $b<x$ then by the first correspondence $m \angle B V X=|b-x|=x-b$ and so $m \angle A V B+b \angle B V X=b+(x-b)=x=m \angle A V X$. But in the second correspondence, this relationship becomes $m \angle A V B+b \angle B V X=a^{\prime}+x^{\prime}=\left|a^{\prime}-x^{\prime}\right|=m \angle A V X$ and so we must have $a^{\prime}+x^{\prime}=\left|a^{\prime}-x^{\prime}\right|$. But this for no positive a^{\prime} and x^{\prime} and we cannot have $b<x$, so that we must have $b>x$.

Theorem 2.7.1 (continued 4)

Theorem 2.7.1. The interior of $\angle A V B$ is the intersection of the halfplane determined by $\overleftrightarrow{V A}$ and B and the halfplane determined by $\overleftrightarrow{V B}$ and A.

Proof (continued). With $b>x$ we have by the first correspondence that $m \angle B V X=|b-x|=b-x$. Also by the first correspondence, $m \angle A V X+m \angle X V B=x+(b-x)=b=m \angle A V B$ so, by Definition 2.6.2, ray $\overrightarrow{V X}$ lies between rays $\overrightarrow{V A}$ and $\overrightarrow{V B}$. Therefore $X \in S_{1}$ and we have $S_{2} \subset S_{1}$.

Therefore, $S_{1}=S_{2}$. That is, the interior of $\angle A V B\left(\right.$ set $\left.S_{1}\right)$ is the intersection of the halfplane determined by $\overleftrightarrow{V A}$ and B and the halfplane determined by $\overleftrightarrow{V B}$ and $A\left(\right.$ set $\left.S_{2}\right)$, as claimed.

Theorem 2.7.1 (continued 4)

Theorem 2.7.1. The interior of $\angle A V B$ is the intersection of the halfplane determined by $\overleftrightarrow{V A}$ and B and the halfplane determined by $\overleftrightarrow{V B}$ and A.

Proof (continued). With $b>x$ we have by the first correspondence that $m \angle B V X=|b-x|=b-x$. Also by the first correspondence, $m \angle A V X+m \angle X V B=x+(b-x)=b=m \angle A V B$ so, by Definition 2.6.2, ray $\overrightarrow{V X}$ lies between rays $\overrightarrow{V A}$ and $\overrightarrow{V B}$. Therefore $X \in S_{1}$ and we have $S_{2} \subset S_{1}$.

Therefore, $S_{1}=S_{2}$. That is, the interior of $\angle A V B$ (set S_{1}) is the intersection of the halfplane determined by $\overleftrightarrow{V A}$ and B and the halfplane determined by $\overleftrightarrow{V B}$ and $A\left(\right.$ set $\left.S_{2}\right)$, as claimed.

Theorem 2.7.2

Theorem 2.7.2. The interior of an angle is a convex set.

Proof. A halfplane is a convex set by definition (see the Plane-Separation Postulate, Postulate 12). By Theorem 2.7.1, the interior of an angle is the intersection of two halfplanes. By Theorem 2.5.7, the intersection of two convex sets is a convex set. Therefore, the interior of an angle is a convex set, as claimed.

Theorem 2.7.2

Theorem 2.7.2. The interior of an angle is a convex set.

Proof. A halfplane is a convex set by definition (see the Plane-Separation Postulate, Postulate 12). By Theorem 2.7.1, the interior of an angle is the intersection of two halfplanes. By Theorem 2.5.7, the intersection of two convex sets is a convex set. Therefore, the interior of an angle is a convex set, as claimed.

Theorem 2.7.3

Theorem 2.7.3. If on each side of an angle a point other than the vertex is selected, every point between these points is in the interior of the angle. Proof. Let V be the vertex of the given angle. Let A be a point on one side of the angle and let point B a point on the other side of the angle (where A and B are distinct from V). Let P be any point between A and B (see Figure 2.17).

Theorem 2.7.3

Theorem 2.7.3. If on each side of an angle a point other than the vertex is selected, every point between these points is in the interior of the angle.
Proof. Let V be the vertex of the given angle. Let A be a point on one side of the angle and let point B a point on the other side of the angle (where A and B are distinct from V). Let P be any point between A and B (see Figure 2.17). For three collinear
 points, only one can be between the other two and since P is between A and B, then B cannot be between A and P. So the segment $\overline{A P}$ does not intersect the line $\overline{V B}$ (line $\overparen{A P}$ intersects $\overleftrightarrow{V B}$ at point B, so there can be no second point of intersection of these two lines). So points P and A lie on the same side of $\overleftrightarrow{V B}$ Similarly, points P and B lie on the same side of $\overparen{V A}$. Therefore, by Theorem 2.7.1, P lies in the interior of the angle, as claimed.

Theorem 2.7.3

Theorem 2.7.3. If on each side of an angle a point other than the vertex is selected, every point between these points is in the interior of the angle.
Proof. Let V be the vertex of the given angle. Let A be a point on one side of the angle and let point B a point on the other side of the angle (where A and B are distinct from V). Let P be any point between A and B (see Figure 2.17). For three collinear
 points, only one can be between the other two and since P is between A and B, then B cannot be between A and P. So the segment $\overline{A P}$ does not intersect the line $\overleftrightarrow{V B}$ (line $\overleftrightarrow{A P}$ intersects $\overleftrightarrow{V B}$ at point B, so there can be no second point of intersection of these two lines). So points P and A lie on the same side of $\overleftrightarrow{V B}$. Similarly, points P and B lie on the same side of $\overleftrightarrow{V A}$. Therefore, by Theorem 2.7.1, P lies in the interior of the angle, as claimed.

Theorem 2.7.10

Theorem 2.7.10. At each point of a given line there is one and only one line which is perpendicular to the given line and lies in a given plane containing the line.

Proof. Let P be a point on line ℓ, let
π be a plane containing ℓ, and let A
be a point on ℓ distinct from P. By the
Plane-Separation Postulate (Postulate
12), line ℓ determines two halfplanes
of π. Let H be one of these halfplanes.
By the Angle-Construction Theorem
(Theorem 2.6.3), there is a unique ray
$P Q$ such that $\angle A P Q$ is a right angle.
Therefore, by definition, $\overleftrightarrow{P Q} \perp \overleftrightarrow{P A}$. See Figure 2.21 above.

Theorem 2.7.10

Theorem 2.7.10. At each point of a given line there is one and only one line which is perpendicular to the given line and lies in a given plane containing the line.

Proof. Let P be a point on line ℓ, let π be a plane containing ℓ, and let A be a point on ℓ distinct from P. By the Plane-Separation Postulate (Postulate 12), line ℓ determines two halfplanes of π. Let H be one of these halfplanes. By the Angle-Construction Theorem (Theorem 2.6.3), there is a unique ray $\overrightarrow{P Q}$ such that $\angle A P Q$ is a right angle.
 Therefore, by definition, $\overleftrightarrow{P Q} \perp \overleftrightarrow{P A}$. See Figure 2.21 above.

Theorem 2.7.10

Theorem 2.7.10. At each point of a given line there is one and only one line which is perpendicular to the given line and lies in a given plane containing the line.

Proof. Let P be a point on line ℓ, let π be a plane containing ℓ, and let A be a point on ℓ distinct from P. By the Plane-Separation Postulate (Postulate 12), line ℓ determines two halfplanes of π. Let H be one of these halfplanes. By the Angle-Construction Theorem (Theorem 2.6.3), there is a unique ray $\overrightarrow{P Q}$ such that $\angle A P Q$ is a right angle.
 Therefore, by definition, $\overleftrightarrow{P Q} \perp \overleftrightarrow{P A}$. See Figure 2.21 above.

Theorem 2.7.10 (continued)

Theorem 2.7.10. At each point of a given line there is one and only one line which is perpendicular to the given line and lies in a given plane containing the line.

Proof (continued). For uniqueness, we need to consider the other halfplane H^{\prime} determined by ℓ. There is a unique ray $\overrightarrow{P Q^{\prime}}$ such that $\angle A P Q^{\prime}$ is a right angle. Hence, by definition, $\overleftrightarrow{P Q^{\prime}} \perp \overleftrightarrow{P A}$. To complete the proof, we must show that $\overleftrightarrow{P Q}$ and $\overleftrightarrow{P Q^{\prime}}$ are the same line. We do so by showing that Q, P, and Q^{\prime} are collinear. Since $\angle Q P A$ and $\angle A P Q^{\prime}$ are supplementary adjacent angles, then by Theorem 2.7.6 rays $\overrightarrow{P Q}$ and $\overrightarrow{P Q^{\prime}}$ form a linear pair, and hence Q, P, and Q^{\prime} are collinear. That is, the lines $\overleftrightarrow{P Q}$ and $\overleftrightarrow{P Q^{\prime}}$ are the same and we therefore have uniqueness.

