Chapter 3. Forms

Note. This chapter gives a classification of "reflexive σ -sesquilinear forms and quadratic forms" over finite dimensional vector spaces of a finite field. Some of the results are given in terms of arbitrary fields, but our interest lies in the setting of finite fields.

3.1. σ -Sesquilinear Forms

Note.

Note. For field \mathbb{F} , we denote the k-dimensional vector space over \mathbb{F} as $V_k(\mathbb{F})$ (as introduced in Section 2.2). In these notes, we largely concentrate on finite fields. Recall that a *linear form* α is a linear map from $V_k(\mathbb{F})$ to \mathbb{F} .

Definition. Let σ be an automorphism of field \mathbb{F} . A σ -sesquilinear form is a map b from $V_k(\mathbb{F}) \times V_k(\mathbb{F})$ to $\mathbb F$ such that $b(u, v)$ is a linear form for any fixed $v \in V_k(\mathbb{F})$, the map $b(u, v)$ is additive for any fixed $u \in V_k(\mathbb{F})$ (that is, $b(u, v_1 +$ $(v_2) = b(u, v_1) + b(u, v_2)$, and $b(u, \lambda v) = \lambda^{\sigma} b(u, v)$ (Ball is using the notation λ^{σ} to represent $\sigma(\lambda)$), for all $v \in V_k(\mathbb{F})$ and $\lambda \in \mathbb{F}$. If σ is the identity automorphism then a σ -sesquilinear form is a *bilinear form*. Two σ -sesquilinear forms b and b' are *isometric* (or equivalent) if there is an isomorphism α of $V_k(\mathbb{F})$ such that

 $b(u, v) = b'(\alpha(u), \alpha(v))$ for all $u, v \in V_k(\mathbb{F})$. A σ -sesquilinear form is *degenerate* if there is a non-zero vector $u \in V_k(\mathbb{F})$ such that $b(u, v) = 0$ for all $v \in V_k(\mathbb{F})$.

Note. Alternatively, a σ -sesquilinear form $b: V_k(\mathbb{F}) \times V_k(\mathbb{F}) \to \mathbb{F}$ is linear in the first position, additive in the second position, and interacts with scalar multiplication in the second position by introducing a power of the scalar as follows:

$$
b(\lambda_1 u_1 + \lambda_2 u_2, v) = \lambda_1 b(u_1, v) + \lambda_2 b(u_2, v)
$$
 and

$$
b(u, \lambda_1 v_1 + \lambda_2 v_2) = \lambda_1^{\sigma} b(u, v_1) + \lambda_2^{\sigma} b(u, v_2).
$$

Notice that an inner product is an example of a σ -sesquilinear form where σ is the identity automorphism on F. The fact that we use inner products to define orthogonality, motives the following definition.

Definition. Let b be a σ -sesquilinear form. For any subset U of $V_k(\mathbb{F})$, its orthogonal subspace with respect to b is

$$
U^{\perp} = \{ v \in V_k(\mathbb{F}) \mid b(u, v) = 0, \text{ for all } u \in U \}.
$$

If U contains only one vector, $U = \{x\}$, then we denote U^{\perp} and either $\{x\}^{\perp}$ of x^{\perp} .

Lemma 3.1. Let U be a subspace of $V_k(\mathbb{F})$. If b is a non-degenerate σ -sesquilinear form on $V_k(\mathbb{F})$ then dim $U + \dim U^{\perp} = k$.

Revised: 10/3/2022