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Chapter 1. Elements of Geometry

Note. This chapter introduces sets and uses them to deal with lines (in particular,

the number line), planes, and angles. We also consider the length of a line segment

and the measure of an angle.

1.1. The Language of Sets

Note. We treat the well-known geometric figures of lines, planes, angle, and circles

as “sets” of points. In this section we discuss sets rather informally. A more

detailed approach to sets can be found in my online notes on Naive Set Theory,

and a much more detailed and axiomatic approach can be found in my online notes

for Introduction to Set Theory.

Definition 1.1.A. A set is a collection of objects. The objects in the set are called

members or elements. The elements of a set are said to belong to or to be contained

in the set.

Note. Definition 1.1.A has used the (mathematically) undefined terms “collection”

and “object.” Since we can only define things in terms of other things, then we

must leave some terms undefined. In a modern version of university-level geometry,

the terms “set” and “point” are left undefined. We will explore this some more

in our Section 1.5. Basic Undefined Terms. For more details on this idea, see my

online notes for Introduction to Modern Geometry (MATH 4157/5157) on Section

1.3. Axiomatic Systems.

https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/Halmos-notes.htm
https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes.htm
https://faculty.etsu.edu/gardnerr/Geometry/notes-JDD/Geometry-JFF-1-5.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-1-3.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-1-3.pdf
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Examples. One way to present a set is to list its elements. We use the nota-

tion of enclosing the elements with set brackets { and }. For example, consider

A = {2, 4, 6}. This is read “set A with elements 2, 4, and 6.” This technique of

describing set A is called specifying by roster. Another way to present a set if by

description or rule. For example, we could have

B = {the real numbers strictly between 0 and 1} = {x ∈ R | 0 < x < 1}.

The little vertical line | in the right-hand description of set B is read “such that”

and introduces the rule (sometimes this is replaced with a colon, as is done in the

text book).

Note. As suggested above, we denote the fact that x is an element of set A as

x ∈ A. If x is not an element of A, then we write x 6∈ A.

Definition 1.1.B. If the elements of a set can be counted with the counting process

coming to an end, then the set is a finite set. Otherwise, it is an infinite set. A set

containing no elements is the empty set, denoted { }, ∅, or ∅. Two sets A and B

are equal if they contain exactly the same elements, denoted A = B.

Note. We largely use the following notations. We denote sets with capital italicized

letters, such as A and B. We denote the real numbers with the common “black

board font” R (as opposed to the calligraphy-type font used in the text book), and

we prefer the symbol ∅ over ∅ to represent the empty set. The book often refers

to “members” of sets, but we more commonly use the term “elements” of sets in

these notes.
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Note. To help with meaning and reading of the symbols we have introduced, we

present several examples:

NOTATION HOW TO READ

x ∈ A x is an element of set A.

x 6∈ A x is not an element of set A.

{3, 4, 5, . . . , 25} The set whose elements are 3, 4, 5,

and so on through 25.

{1, 2, 3, . . .} The set whose elements are 1, 2, 3,

and so on indefinitely.

{x | x ∈ A} = {x : x ∈ A} The set of all x such that x is

an element of set A

{x | 2x + 8 = 12} The set of all x such that the sum

= {x : 2x + 8 = 12} of twice x and 8 is equal to 12.

x ∈ R x belongs to the set of real numbers.

Exercise 1.1.6. Use the roster method to specify the set {the positive integers}.

Is the set finite or infinite?

Solution. The set of integers can be presented using the roster method as

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

To get the positive integers, we exclude the negative integers, . . . ,−3,−2,−1,

and integer 0 (recall that 0 is neither positive nor negative). So the given set

is {1, 2, 3, . . .} , read “The set whose elements are 1, 2, 3, and so on indefinitely.”

This is an infinite set since the process of counting the elements does not come to

an end. �
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Exercise 1.1.22. Use the description method (or the “rule method”) to specify

the set {Saturday, Sunday}.

Solution. There are many possible solutions to this. Two are the following:

{ Saturday, Sunday} = { the days of the week which start with the letter S}

and

{ Saturday, Sunday} = { the days of the week which in the weekend}.

We include this example to show that sets can have as elements something other

than numbers. �
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