1.2. Relationships between Sets

Note. We define the intersection and union of two sets, and illustrate these ideas with examples and illustrations.

Definition 1.2.A. For sets A and B, if every element of A is also an element of B then A is a subset of B, denoted $A \subset B$ (read " A is a subset of B "). If A is not a subset of B, we write $A \not \subset B$.

Example 1.2.1. List all subsets of $\{1,2,3\}$.
Solution. First, the empty set is a subset of all sets. Also, any set itself is a subset of a given set. So here there are subsets containing no elements, one element, two elements, and three elements. So the subsets are:

$$
\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\} .
$$

Definition 1.2.B. The intersection of sets A and B is the set of elements belong to both A and B. This set is denoted $A \cap B$. If A and B do not intersect (that is, if the intersection is the empty set), then these sets are disjoint.

Example 1.2.2. Let $A=\{2,3\}, B=\{2,3,4\}$, and $C=\{4,5\}$. Find $A \cap B$, $A \cap C$, and $B \cap C$.

Solution. We have, by the definition of intersection, that

$$
A \cap B=\{2,3\}, A \cap C=\varnothing, \text { and } B \cap C=\{4\} .
$$

Definition 1.2.C. The union of sets A and B is the set of elements belong at least one of sets A and B. This set is denoted $A \cup B$.

Example 1.2.3. Let $A=\{1,2,3\}, B=\{2,3,4\}$, and $C=\varnothing$. Find $A \cup B, B \cup C$, and $(A \cup B) \cup C$.

Solution. We have, by the definition of union, that

$$
A \cup B=\{1,2,3,4\}, B \cup C=\{2,3,4\}, \text { and }(A \cup B) \cup C=\{1,2,3,4\} .
$$

Note. It is common to represent a set as a region of in the plane. Then intersections and unions can be represented by shading. In the following figures (from page 7 of the book), sets R and S are represented as regions, and $R \cap S$ (left) and $R \cup S$ (right) are represented by shading. We explore this idea more in the next section.

Revised: 1/5/2022

