1.2. Relationships between Sets

Note. We define the intersection and union of two sets, and illustrate these ideas with examples and illustrations.

Definition 1.2.A. For sets A and B, if every element of A is also an element of B then A is a *subset* of B, denoted $A \subset B$ (read “A is a subset of B”). If A is not a subset of B, we write $A \not\subset B$.

Example 1.2.1. List all subsets of $\{1, 2, 3\}$.

Solution. First, the empty set is a subset of all sets. Also, any set itself is a subset of a given set. So here there are subsets containing no elements, one element, two elements, and three elements. So the subsets are:

$\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}$.

Definition 1.2.B. The *intersection* of sets A and B is the set of elements belong to both A and B. This set is denoted $A \cap B$. If A and B do not intersect (that is, if the intersection is the empty set), then these sets are *disjoint*.

Example 1.2.2. Let $A = \{2, 3\}$, $B = \{2, 3, 4\}$, and $C = \{4, 5\}$. Find $A \cap B$, $A \cap C$, and $B \cap C$.
1.2. Relationships between Sets

Solution. We have, by the definition of intersection, that

\[A \cap B = \{2, 3\}, \quad A \cap C = \emptyset, \quad \text{and} \quad B \cap C = \{4\}. \]

Definition 1.2.C. The union of sets \(A \) and \(B \) is the set of elements belong at least one of sets \(A \) and \(B \). This set is denoted \(A \cup B \).

Example 1.2.3. Let \(A = \{1, 2, 3\} \), \(B = \{2, 3, 4\} \), and \(C = \emptyset \). Find \(A \cup B \), \(B \cup C \), and \((A \cup B) \cup C \).

Solution. We have, by the definition of union, that

\[A \cup B = \{1, 2, 3, 4\}, \quad B \cup C = \{2, 3, 4\}, \quad \text{and} \quad (A \cup B) \cup C = \{1, 2, 3, 4\}. \]

Note. It is common to represent a set as a region of in the plane. Then intersections and unions can be represented by shading. In the following figures (from page 7 of the book), sets \(R \) and \(S \) are represented as regions, and \(R \cap S \) (left) and \(R \cup S \) (right) are represented by shading. We explore this idea more in the next section.

Revised: 1/5/2022