1.3. Venn Diagrams

Note. In the previous section, we represented the intersection $R \cap S$ and union $R \cup S$ or two sets R and S with a picture where the sets are drawn as regions in the plane. These are examples of *Venn diagrams*. They are named for John Venn (August 4, 1834–April 4, 1923), who used them in his 1881 *Symbolic Logic*. Similar ideas of representing collections of objects graphically had been proposed by others predating Venn's work, but his book popularized the idea.

Definition 1.3.A. In these notes, when dealing with sets, we assume some *uni*versal set U that contains all objects under consideration. For a given set X, all elements in U that are not in X form the *complement* of X, denoted \overline{X} .

Example 1.3.A. A Venn diagram for sets U, X, and \overline{X} is:

Example 1.3.1. Let U be the set of all girls, X the set of all girls who are exactly 16 years old, Y the set of girls with long hair, and Z the set of all girls who are

exactly 17 years old. (This is example from the text book, in which the terms are "quaint"; we assume the sets can be unambiguously determined in spite of the informal terminology.) Describe in words the following sets and draw a Venn diagram for each: $\overline{X}, X \cap Y, X \cup Y, X \cap Z, X \cup Z$, and $\overline{X \cap Y}$.

Solution. Since U is the set of all girls and X is the set of all girls who are exactly 16 years old, then

\overline{X} is the set of all girls who are NOT exactly 16 years old.

Since X the set of all girls who are exactly 16 years old AND Y the set of girls with long hair, then

 $X \cap Y$ is the set of all girls who are exactly 16 years old AND have long hair.

Since X the set of all girls who are exactly 16 years old and Y the set of girls with long hair, then

 $X \cap Y$ is the set of all girls who are exactly 16 years old OR who have long hair.

Since X the set of all girls who are exactly 16 years old and Z is the set of all girls who are exactly 17 years old, then $X \cap Z$ is the set of all girls who are exactly 16 years old AND are exactly 17 years old. However, no one can have two different ages, so $X \cap Z = \emptyset$.

Since X the set of all girls who are exactly 16 years old and Z is the set of all girls who are exactly 17 years old, then

 $X \cup Z$ is the set of all girls who are exactly 16 years old OR are exactly 17 years old. Now $X \cap Y$ is the set of all girls who are exactly 16 years old AND have long hair, as shown above. So $\overline{X \cap Y}$ is the set of all girls not in $X \cap Y$; that is,

The Venn diagrams for these sets are:

Written Exercise 1.3.16. Shade the regions representing $\{x \mid x \in A \text{ or } x \in \overline{B}\}$.

Solution. We break this into three parts. On the left we have shaded all $x \in A$.

In the middle we have shaded all $x \in \overline{B}$. On the right we have shaded the union ("or") of these two sets.

Revised: 1/5/2023