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Section 1.5. The Computation of Areas.

Note. In this section, we introduce “the third pillar of this chapter,” as Wanner

and Osermann call it (see page 11), along with Thales’ Theorem (Theorem 1.1)

and Euclid III.20 (Theorem 1.4).

Note/Definition. We start with the idea or definition that the area of a rectangle

with sides of lengths a and b is A = a · b = ab.

Note. Based on the area of a rectangle, we claim that the area of a parallelogram

of base length a and height h is A = a · h = ah. This is Euclid’s I.35 which is

justified by Figure 1.11 (second box) by cutting off a right triangle from one side of

the parallelogram and moving it to the other side to produce a rectangle of base a

and height h (and hence a rectangle of area ah, the same area as that of the given

parallelogram).
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Note/Definition. The area of a triangle of base c and height a is half the area of

the parallelogram with base c and height h (namely, half of c · h = ch):

A = area of triangle = base × altitude divided by 2 =
c · h
2

.

See Figure 1.11 (third box) for motivation/justification.

Note/Definition. The area of a trapezium with base lengths a and b and with

height h is

A = bh +
a− b

2
· h =

2bh + (a− b)h

2
==

ah + bh

2
=

a + b

2
h.

This is motivated/justified in by cutting the trapezium into a parallelogram and a

triangle and using the two previous notes/definitions.

Note. The Rhind papyrus (also called the “Ahmes papyrus” after the scribe who

wrote it) was bought by egyptologist A.H. Rhind in 1858 in a market in Luxor,

Egypt. It was written around 1650 BCE and is claimed to be a copy of an original

work from the 19th centurey BCE.

An image of the Rhind papyrus from the The British Museum

It is described on the The British Museum webpage (accessed 8/14/2021) as “The

papyrus is probably a mathematics textbook, used by scribes to learn to solve

https://www.britishmuseum.org/collection/object/Y_EA10058
https://www.britishmuseum.org/collection/object/Y_EA10058
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particular mathematical problems by writing down appropriate examples. Eighty-

four problems are included in the text covering tables of divisions, multiplication,

and handling of fractions; and geometry, including volumes and areas.”

Note. The Egyptians used a decimal system with the symbols: 1 = |, 10 = 2,
100 = 3, 1,000 = 4, 10,000 = 5, 100,000 =6, and 1,000,000 =7 (these fonts are

generated in LATEX using the package hieroglf). They then repeated symbols as

needed to represent multiples of these numbers. For example,

(notice that the symbol for 100 here from Ostermann and Wanner is slightly dif-

ferent from that given in LATEX above).

In Figure 1.12 (left) we have Problem 49 which gives a rectangle of dimensions

2 = || by 10 = 2, the area of which is 20 = 22 (though there seems to be an error

by the scribe at this point). In Figure 1.12 (center) we have Problem 51 which gives

a triangle of base 4 = |||| and height 10 = 2, the area of which is 20 = 22. In Figure

1.12 (right) we have Problem 52 which gives a trapezium of base lengths 4 = ||||
and 6 = ||||||, and height 20 = 22, the area of which is

(4) + (6)

2
(20) = 100 = 3.
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An image of the part of the Rhind papyrus including the drawings from Figure

1.12, from the The British Museum

See the MacTutor Mathematics in Egyptian Papyri website for more of the problems

in the Rhind papyrus (accessed 8/14/2021).

Note. Now we consider the areas of similar triangles. We use Figure 1.2 (lower

left) to give circumstantial evidence for the relationship between areas of similar

triangles. Here, we consider the three triangles ABC, AB′C ′, and A, B′′C ′′. Notice

that all three triangles are similar. Triangle ABC has sides 5 times as long as the

sides of AB′′C ′′, and AB′C ′ has sides 8/5 as long as the sides of ABC. We use the

congruent copies of the little triangle AB′′C ′′ to discuss area. We use the red lines in

the modified version of Figure 1.2 to count copies of the little triangle. The number

https://www.britishmuseum.org/collection/object/Y_EA10058
https://mathshistory.st-andrews.ac.uk/HistTopics/Egyptian_papyri/
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of copies of the little triangle in ABC is 1+3+5+7+9 = 25 = 52. The number of

copies of the little triangle in AB′C ′ is 1+3+5+7+9+11+13+15 = 64 = 82. Notice

that the ratio of the area of AB′C ′ to the area of ABC is 64/52 = 82/52 = (8/5)2.

So if two triangles are similar with rational ratio r between the lengths of their sides

(such as triangles AB′C ′ and ABC, where the ratio is r = 8/5) then the ratio of

the areas is r2 (such as triangles AB′C ′ and ABC, where the ratio is r2 = (8/5)2).

Figure 1.2 lower left and modified

We used the red lines to partition the larger triangle into collections of odd numbers

of little triangles (which are sort a greatest common divisor of the larger triangles)

and then counted the little triangles. The fact that we get areas expressed in terms

of perfect squares (25 and 64 for triangles ABC and AB′C ′) is illustrated in the

following (from page 12 of Ostermann and Wanner).

This argument can be cleaned up and turned into a rigorous proof, provided the

ratio between the lengths of the similar triangles is rational. Not surprisingly, the
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same result holds even if the ratio is irrational (though this line of reasoning does

not apply to the irrational case), as stated next.

Theorem 1.6. (Euclid VI.19) A similar triangle with q times longer sides has q2

times larger area.
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