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Section 1.7. The Pythagorean Theorem

Note. We saw in the previous section that the Pythagorean Theorem was know

(at least in some cases) 3,600 to 4,000 years ago.

Note. Figure 1.15 gives a visual presentation of three proofs of the Pythagorean

Theorem from three “civilizations,” Chinese, Indian, and Arabic. With c as the

length of the hypotenuse, we consider a square of area c2 in Figure 1.15(a).

Figure 1.15

Note. In Figure 1.15(b), four right triangles with legs of lengths a and b and

hypotenuse with length c are introduced. Based on the fact that the angles of a

triangle sum to 180◦, we can show that Figure 1.15(b) actually is a square. Now we

can use the fact that the area of a triangle is 1/2(base)(altitute) (see Section 1.5.

The Computation of Areas) to show that the area of the square of Figure 1.15(b)

is (a+b)2 = 4×
(1

2ab
)
+c2 or a2 +2ab+b2 = 2ab+c2 or a2 +b2 = c2. The text book

credits this proof to Chou-pei Suan-ching of China in 250 BCE (the reference on

https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-1-5.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-1-5.pdf


Section 1.7. The Pythagorean Theorem 2

this is B.L. van der Waerden, Geometry and Algebra in Ancient Civilization, Berlin:

Springer-Verlag (1983)). The triangles can also be sifted around to represent the

same square of Figure 1.15(b) in terms of two square (of areas a2 and b2) and two

a by b rectangles (see Figure 1.15, right).

Note. In Figure 1.15(c) four right triangles are removed from the square of area

c2. Again, since the sum of the angles of a triangle is 180◦ then the triangles

“fit” together to form the configuration of Figure 1.15(c). Computing areas gives

c2 = 4×
(1

2ab
)
+(a− b)2 or c2 = 2ab+(a2−2ab+ b2) or a2 + b2 = c2. The text book

attributes this proof to the Indian Bhāskara II (1114–1185), but does not give a

reference. A solid reference about this is Kim Plofker’s “Mathematics in India,”

in Victor Katz (ed.), The Mathematics of Egypt, Mesopotamia, China, India, and

Islam: A Sourcebook, Princeton University Press (2007) (see pages 476–477).

Note. Yet another, but similar, proof is illustrated in Figure 1.15(d). This is a

combination of the two methods above, in that two right triangles with legs of

lengths a and b are added to the outside of the square of area c2 and two such

right triangles are “subtracted” from inside the square. So the result (in white and

light gray in Figure 1.15(d)) is the same as the area of the original square (namely,

c2) and equals a2 + b2 as can be seen in the figure (which is, again, justified by

the fact that the angles of a triangle sum to 180◦). This proof is attributed to

Thâbit ibn Qurra (828–901); see F. J. Swetz’s From Five Fingers to Infinity, Open

Court (1996). A webpage with animations illustrating these three proofs, and many

others, is available on the Many Proofs of Pythagorean Theorem webpage.

http://www.takayaiwamoto.com/Pythagorean_Theorem/Pythagorean_Theorem.html
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Note. Consider the figure below (the left part). We first give an informal argument

for the Pythagorean Theorem. To each side of right triangle ABΓ has been attached

a square. We want to show that the area of square BΓE∆ equals the sum of the

areas of squares ABZH and AΓKΘ. The areas of the two dark grey triangle

BA∆ and BZΓ are the same, since one triangle can be obtained from the other

by rotating through 90◦ about point B. The triangle BZΓ has the same base and

altitude as the square BAHZ (the common base is the length of the segment BZ

and the common height is the length of segment AB). The triangle BA∆ has the

same base and height as the rectangle B∆ΓP (the common base is the length of

line segment B∆ and the common height is the length of segment ∆Γ). So half

the area of square ABZH equals half the area of rectangle B∆ΛP , and hence the

area of ABZH equals the area of rectangle B∆ΛP . Similarly, the area of square

AΓKΘ equals the area of rectangle ΛEΓP . Since square BΓE∆ is composed of

the two rectangles B∆ΛP and ΛEΓP , then the sum of the areas of squares ABZH

and AΓKΘ equals the area of square BΓE∆, as needed.

Figure. Part of Figure 1.19 (left, with the label P added) and a modification of

it similar to the figure for the Pythagorean Theorem given in Euclid’s Elements.
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Note. The argument above is basically the argument made by Euclid in his Ele-

ments. This is such a historical result given in a historical reference, we now repro-

duce Euclid’s proof as stated in Thomas Heath’s The Thirteen Books of Euclid’s

Elements, translated from the test of Heiberg, with introduction and commentary,

Second Edition, Cambridge: Cambridge University Press (1926) (reprinted in 1956

by Dover Publications). A copy is online at bibotu.com (accessed 9/10/2021). The

bold-faced items are references to other results in the Elements.

Proposition I.47. In right-angled triangles the square on the side subtending the

right angle is equal to the squares on the sides containing the right angle.

Proof. Let ABC be a right-angled triangle having the angle BAC right;

I say that the square on BC is equal to the squares on BA, AC.

For let there be described on BC the square BDEC, and on BA, AC the squares

GB, HC; [I.46]

through A let AL be drawn parallel to either BD or CE, and let AD, FC be

joined.

Then since each of the angles BAC, BAG is right, it follows that with a straight

line BA, and at the point A on it, the two straight lines AC, AG not lying on the

same side make the adjacent angles equal to two right angles;

therefore CA is in a straight line with AG. [I.14]

For the same reason BA is also in a straight line with AH.

And, since the angel DBC is equal to the angle FBA: for each is right: let the

angle ABC be added to each;

therefore the whole angle DBA is equal to the whole angle FBC. [C.N.2]

And, since DB is equal to BC, and FB to BA, the two sides AB, BD are equal

http://bibotu.com/books/2013/History%20and%20Philosophy%20of%20Science/Heath%20-%20Thirteen%20Books%20of%20Euclid%27s%20Elements%202e%20Unabridged%20-%20Vol.%201%20-%20Books%20I-II%20%28Cambridge,%201968%29.pdf
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to the two sides FB, BC respectively, and the angle ABD is equal to the angle

FBC

therefore the base AD is equal to the base FC, and the triangle ABD is equal

to the triangle FBC. [I.4]

Now the parallelogram BL is double of the triangle ABD, for they have the

same base BD and are in the same parallels BD, AL. [I.41]

And the square GB is double of the triangle FBC, for they again have the same

base FB and are in the same parallels FB, GC. [I.41]

[But the doubles of equals are equal to one another.]

Therefore the parallelogram BL is also equal to the square GB.

Similarly, if AE, BK be joined, the parallelogram CL can also be proved equal

to the square HC;

therefore the whole square BDEC is equal to the two squares GB, HC. [C.N.2]

And the square BDEC is described on BC, and the squares GB, HC on BA,

AC.

Therefore the square on the side BC is equal to the squares on the sides BA,

AC.

Therefore, etc. Q. E. D.

Note. Vatican Manuscript Number 190 dates from the 10th century and contains

the Books I to XII of Elements, along with some other work. The text displays

properties indicating that it is a more ancient version than others that survive.

The image here (from the Greek Mathematics and its Modern Heirs webpage) is

from the page containing the proof of the Pythagorean Theorem.

http://www.ibiblio.org/expo/vatican.exhibit/exhibit/d-mathematics/Greek_math.html
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Figure. Vatican Manuscript Number 190, volume 1 folio 39 (close-up).

Note. Consider the right triangle ABC in Figure 1.20. Introducing the perpen-

dicular to segment AB which contains point C, we get that triangles DBC and

CBA are similar and triangles DAC and CAB are similar. So corresponding sides

have lengths that are in the same proportion (this is Thales’ Intercept Theorem,

Theorem 1.1). Therefore

a

p
=

c

a
which implies a2 = pc, and

b

q
=

c

b
which implies b2 = qc.

So a2 + b2 = (pc) + (qc) = (p + q)c = c2 since c = p + q.

This proof is credited to Leonardo of Pisa (also known as Fibonacci, circa 1170–

1250) and was given in his Practica Geometria in 1200.



Section 1.7. The Pythagorean Theorem 7

Note. We now turn out attention to the proof given by Pythagoras himself. Quot-

ing from Sir Thomas Heath’s A History of Greek Mathematics, Volume I, Clarendon

Press (1921), which is still in print by Dover Publications and available for online

reading from archive.org:

“The next question is, how was the theorem proved by Pythagoras or

the Pythagoreans? Vitrivius says that Pythagoras first discovered the

triangle (3, 4, 5), and doubtless the theorem was first suggested by the

discovery that this triangle is right-angled; but this discovery probably

came to Greece from Egypt. . . . Two possible lines are suggested on

which the general proof may have been developed. One is that of

decomposing square and rectangular areas into squares, rectangles and

triangles, and piecing them together again after the manner of Eucl.,

Book II; the isosceles right-angles triangle gives the most obvious case

of this method. The other line is one depending upon proportions; and

we have good reason for supposing that Pythagoras developed a theory

of proportion. . . . [Euclid] proved I.47 [the Pythagorean Theorem] by

the methods of Book I instead of by proportions in order to get the

proposition into Book I instead of Book VI [on proportions], to which it

must have been relegated if the proof by proportions had been used. If,

on the other hand, Pythagoras had proved it by means of the methods

of Books I and II, it would hardly have been necessary for Euclid to

devise a new proof of I.47. Hence it would appear most probably that

Pythagoras would prove the proposition by means of his (imperfect)

theory of proportions.”

https://archive.org/details/cu31924008704219
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Note. For Pythagoras’ proof by means of his “imperfect” theory of proportions, as

Heath speculates, we consider the four shaded triangles in Figure 1.21. They have

hypotheses of 1, a, b, and c, and they are similar to each other by construction. If

k denotes the area of the triangle with hypotenuse 1, then the other triangles have

the areas as given in the figure, namely ka2, kb2, and kc2. This holds by Theorem

1.6 (which appears in the Elements as Euclid’s VI.19). Comparing the center and

left triangles, we see that ka2 + kb2 = kc2, or a2 + b2 = c2 as needed.

A quick comment is in order to Heath’s use of the term “imperfect.” The Pythagorean

theory of proportion only applies to commensurable magnitudes. That is, it is only

valid for rational proportions. This is suggested in Figure 1.6 (of Section 1.2.

Similar Figures) where the technique of constructing rational links is given.

Note. We now use the Pythagorean Theorem to find the radii of the incircle and

the circumcircle (denoted ρ and R, respectively) of a given regular n-gon with sides

of length 1. In the case n = 3, these two circles are given in Figure 1.22 (left).
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In each case, we consider a line segment from the center of the circle to a vertex

v of the n-gon; notice that such a line segment has length R. Next, we introduce

a line segment from the center of the circle to the midpoint of one of the edges of

the n-gon that has vertex v as one of its endpoints; notice that such a line segment

has length ρ. The center of the circle, the vertex v, and the midpoint of the line

segment then form a right triangle with sides of lengths r, ρ, and 1/2 (the 1/2

resulting from bisecting and edge of the n-gon; see Figure 1.22 for the cases of

n = 3 and n = 5). So by The Pythagorean Theorem we have R2 = ρ2 + (1/2)2, or

ρ =
√

R2 − 1/4. In the case n = 3, we introduce the distance h given in Figure

1.22 (left). We know, also by the Pythagorean Theorem, that h =
√

3/2 (since we

are deal with a 30-60-90 triangle). Then

ρ = h−R =
√

3/2−R and so
√

R2 − 1/4 =
√

3/2−R, or R2 − 1/4

= 3/4−
√

3R + R2, or R = 1/
√

3 =
√

3/3.

Hence

ρ =

√
(
√

3/3)2 − 1/4 =
√

1/3− 1/4 =
√

1/12 = 1/(2
√

3) =
√

3/6.

This is the first entry in Table 1.1 below. Similarly, in Figure 1,22 (right) we

introduce the distance ` and we see that the larger shaded triangle has sides of

lengths, 1, `, and Φ/2 (see the “golden ratio” in Section 1.4. The Regular Pentagon;

recall that Φ2 = Φ + 1). It is left as Exercise 1.7.A to show that R and ρ take on

the values given in Table 1.1 in the case that n = 5.
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