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Section 2.1. Book I.

Note. In this section (and the five that follow), we present the postulates, and

some of the definitions and theorems of Euclid’s Elements. Along the way, we give

some commentary and a bit of criticism.

Note. Euclid’s Elements starts unceremoniously with 23 definitions and no pic-

tures. As a sampling of these definitions, we have:

Definition 1. A point is that which has no part.

Definition 4. A straight line is a line which lies evenly with the points on itself.

Definition 8. A plane angle is the inclination to one another of two straight lines

in a plane which meet one another and do not lie in a straight line.

Definition 23. Parallel straight lines are straight lines which, being in the same

plane and being produced indefinitely in both directions, do not meet one another

in either direction.

Of course this raises as many questions as it answers, since we now focus on the

terms “part,” “lies evenly,” “inclination,” and the meaning of “being produced in-

definitely in both directions.” Since we can only define new terms using old terms,

at some point we must stop and simply take certain terms as undefined. The prop-

erties of these undefined terms are given to them by the postulates; see my online

notes for “Introduction to Modern Geometry” (MATH 4157/5157) on Section 1.3.

Axiomatic Systems. So this part of Euclid’s approach is (by modern standards, at

least) is futile!

https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-1-3.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-1-3.pdf
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Note. Book I contains five “postulates” (or assumptions). They are:

Postulate 1. To draw a straight line from any point to any point.

Postulate 2. To produce a finite straight line continuously in a straight line.

Postulate 3. To describe a circle with any center and radius.

Postulate 4. That all right angles equal one another.

Postulate 5. That, if a straight line falling on two straight lines makes the interior

angles on the same side less than two right angles, the two straight lines, if produced

indefinitely, meet on that side on which are the angles less than the two right angles.

The first three postulates are meant to insure the existence of certain constructions.

Postulate 1 means that if two (distinct) points are given, then a line containing

those two points can be constructed. Postulate 2 means that if a line segment (a

“finite straight line”) is given, then it can be extended to a (infinite, unbounded)

line. Postulate 3 means that if a point is given and if a distance is given (in terms a

particular line segment), then a circle with the point as its center and the distance as

its radius can be constructed. This terminology is used throughout the Elements

(along with an unusual way of distinguishing between lines and line segments).

Postulate 4 claims an equality of a certain class of angles; it is actually the measure

of the angles that are being claimed to be equal (though the measure of an angle

is never defined). Ostermann and Wanner state that Postulate 4 “expresses the

homogeneity of space in all directions” (see their page 30); this is usually called

the property of isotropy. Notice that the first four postulates are unsurprising and

uncomplicated. However, Postulate 5 could use some additional exploration.
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Note. Postulate 5 is the Parallel Postulate. Think of the “two straight lines” as

being given, and then a “straight line falling” on these as a transversal cutting

both lines. The idea of “interior angles” requires some concept of “betweenness”

(another shortcoming of Euclid’s approach; see my online notes for “Introduction

to Modern Geometry” [MATH 4157/5157] on Section 2.5. Order Relations). The

condition “less than two right angles” requires (again) the idea of a measure of an

angle (and, if we are being picky, the “side” of a line is never defined). So by our

21st century standards, Euclid lacks some rigor. But, of course, there is good stuff

here and we continue! Ostermann and Wanner illustrate the Parallel Postulate as

follows (with angles α and β as the two interior angles):

We comment in passing that the complicated nature of the Parallel Postulate lead

some to try to prove it based on other theorems. None of these approaches were

successful, but some lead to the discovery of non-Euclidean geometry.

Note. Book I also contains five “Common Notions.” These are related to arith-

metic relationships concerning equality and “greater than.” The common notions

are:

Common Notion 1. Things which equal the same thing also equal one another.

Common Notion 2. If equals are added to equals, then the wholes are equal.

Common Notion 3. If equals are subtracted from equals, then the remainders

https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-2-5.pdf
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are equal.

Common Notion 4. Things which coincide with one another equal one another.

Common Notion 5. The whole is greater than the part.

Note. We now turn our attention to the propositions. Book I contains 48 proposi-

tions which address the construction of equilateral triangles, certain lines, congruent

triangles, properties of triangles, bisection of an angle and a line segment, angles

determined by two intersecting lines and angles in a triangle, interior and alternate

angles and their relationship to parallel lines, parallelograms, and the Pythagorean

Theorem.

Euclid, Book I Proposition 1. On a given finite straight line AB to construct

an equilateral triangle.

Note. The existence of the point of intersection Γ of the two circles in the proof of

Proposition 1 reveals another weakness in Euclid’s approach. This requires some

concept of continuity and a continuum (Heath comments in his translation of the

Elements that both Zeno and Proclus brought attention to this; see pages 242

and 243). Euclid deserves a real break on this, since these ideas were not made

completely rigorous until the mid 1800’s. For additional discussion, see my online

notes for “Introduction to Modern Geometry” [MATH 4157/5157] on Section 2.4.

The Measurements of Distance.

https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-2-4.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-2-4.pdf
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Euclid, Book I Proposition 2. To place at a given point A a straight line AE

equal to a given straight line BΓ.

Note. The relative positions of points A, B, and Γ in the proof of Euclid I.2

requires the consideration of cases (the arguments being similar in each case). This

is an objection also raised by Proclus (see Heath’s Elements, page 245). The reason

that Euclid I.2 is proved is that it allows us to construct at any point A a circle

with a radius given by some other line segment (as opposed to Postulate 3, which

only allows the creation of a circle centered at a given point and passing through

a given point). The idea is that we can set a compass at a certain radius and then

“compass-carry” that radius to any given point. As usual, the Elements are written

with an eye towards compass and straightedge constructions.

Euclid, Book I Proposition 4. Given two triangles with a = a′, b = b′, γ = γ′,

then all sides and angles are equal.
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Note. Euclid I.4 is commonly called “Side-Angle-Side” (SAS) and it gives a con-

dition under which two triangles are congruent. Euclid’s proof involves an idea of

superposition (as does his Common Notion 4 when he uses the term “coincides”).

This approach is often criticized; Euclid has not addressed any type of motion in

his definitions, postulate, or common notions. See Heath’s Element’s, page 249.

These ideas of motion and superposition can be dealt with using transformations

and these ideas are preserved in a modern geometry class by considering trans-

formational geometry (see my online notes for Introduction to Modern Geometry

[MATH 4157/5157] for Transformational Geometry). It is also common in a mod-

ern geometry class to take Euclid I.4 as a postulate. This is done by David Hilbert

in his 1899 The Foundations of Geometry which was an attempt to clearly state

all the postulates (or “axioms”) of Euclidean geometry and to present it in a rig-

orous, purely mathematical way (without, for example, an appeal to pictures).

We’ll consider Hilbert’s work again briefly in Section 2.7. Epilogue. In my online

notes for Introduction to Modern Geometry [MATH 4157/5157] on Section 2.9.

The Congruence Postulate (see Postulate 16).

Note. Euclid states his Proposition 5 as: “In isosceles triangles the angles at the

base equal one another, and, if the equal straight lines are produced further, then

the angles under the base equal one another.” Ostermann and Wanner state it

more algebraically and use the notation that the length of a side of a triangle is

expressed using lower case English letters and the measure of an angle opposite a

side is labeled with the corresponding lower case Greek letter (so side a is opposite

angle α, for example).

https://faculty.etsu.edu/gardnerr/Geometry/Geometry-notes.htm
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-2-1.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-2-9.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-2-9.pdf
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Euclid, Book I Proposition 5. If in a triangle, a = b, then α = β.

Note. Euclid I.5 is sometimes called (and this is mentioned by Ostermann and

Wanner) the pons asinorum or asses’ bridge. This is addressed in David Eugene

Smith’s History of Mathematics, Volume II, Ginn and Company (1925). He even

titles a subsection of Section V.5 “Pons Asinorum.” On page 284 he comments:

“The proposition represented substantially the limit of instruction in

many courses in the Middle Ages. It formed a bridge across which fools

could not hope to pass, and was therefore known as the pons asinorum,

or bridge of fools. It has also been suggested that the figure given by

Euclid resembles the simplest form of a truss bridge, one that even a

fool could make. The name seems to be medieval.”

So Proposition 5 marks a transition from elementary results to more complicated

results.

Note. Notice in the proof of Euclid I.5, by applying Postulate 2 and “continuously”

extending line segments, we are introducing the concept of continuity and using it

intuitively. In a modern approach to geometry, we would deal with the continuity

concept with a postulate that effectively treats every line in Euclidean geometry

with the real number line. See my online notes for Introduction to Modern Geome-

try (MATH 4157/5157), the Axiomatic Method, on Section 2.4. The Measurements

of Distance; notice The Ruler Postulate, Postulate 11. In this way, all continuity

concerns are pushed onto to the real number line and are dealt with in a senior-level

analysis class; see my online notes for Analysis 1 (MATH 4217/5217) on Section 1.3.

https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-2-4.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-2-4.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
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The Completeness Axiom. This may also be addressed in a freshman-level calculus

class. See my online Calculus 1 (MATH 1910) notes on Appendix A.6. Theory of

the Real Numbers for an informal discussion of a rigorous approach to continuity

of the real line (a video for this section is also available). Interestingly, continuity

of the real line (an idea implicit to any study of geometry, including Euclid’s 23000

year-old Elements) is not cleanly defined until 1872 by Richard Dedekind in his

“Continuity and Irrational Numbers,” a copy of which can be found at Project

Gutenberg.

Note. Pappus of Alexandria (circa 290–circa 350), presumably in a commentary

on Euclid’s Elements, gave an elementary proof of Euclid I.5 based on Euclid I.4

(we’ll discuss Pappus in more detail in Section 4.1. The Conchoid of Nicomedes,

The Trisection of an Angle). He argues that triangles ACB and BCA are equal

by Euclid I.4 (side-angle-side), so that the corresponding angles α and β must be

equal, as claimed; see Figure 2.2(b) and (c).

Figure 2.2(b) and (c)

https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/A6-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/A6-14E.pdf
https://etsu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=3e407a83-9778-458d-95ef-ac8500491404
https://www.gutenberg.org/files/21016/21016-pdf.pdf
https://www.gutenberg.org/files/21016/21016-pdf.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-4-1.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-4-1.pdf
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Note. Euclid I.6 is the converse of Euclid I.5. That is, in the notation of Euclid

I.5, if α = β then a = b. The next two results concern the equivalence of triangles

based on the lengths of the three sides.

Euclid, Book I Proposition 7. Consider the two triangles of Figure 2.3(a), with

the same base AB and with the third vertex on the same side of the base. If a = a′

and b = b′, then points C and D are the same, C = D.

Figure 2.3(a)

Note. Euclid’s proof of Euclid I.7 is an “indirect proof” or a “proof by contradic-

tion.” Philosophers call this type of argument (in Latin) reductio ad absurdum. See

my online notes for Mathematical Reasoning (MATH 3000) on Section 1.4. Proofs:

Structures and Strategies for more details.

Euclid, Book I Proposition 8. If two triangles ABC and DEF have sides of

equal lengths, then they also have equal angles.

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-1-4.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-1-4.pdf
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Note. The proof for Euclid I.8 of Philo of Byzantium given in the supplement

involves an idea of movement when one line segment is placed on another line seg-

ment of the same length so that the respective endpoints of the two line segments

coincide. Though certainly intuitively clear, nothing in the postulates nor the

common notions address movement (though Common Notion 4 mentions “things

which coincide”). Movement can be rigorously addressed by introducing transfor-

mations. This falls in the realm of transformational geometry. For this approach,

see my online notes for Introduction to Modern Geometry (MATH 4157/5157) on

transformational geometry, where the complex plane is the setting for Euclidean

geometry (and a subset of it is the setting for the non-Euclidean geometry called

hyperbolic geometry).

Note. Euclid’s Propositions 9–12 in Book I are illustrated in Figure 2.4 below.

Euclid I.9 gives a construction for bisecting a given angle (the idea with these

constructions is that they are performed with a compass and straightedge). Euclid

I.10 gives the construction for the bisection of a line segment. Euclid I.11 gives a

construction of a perpendicular to a line through a given point on the line. These

results use an equilateral triangle, which we know to exist by Euclid I.1. Euclid

I.12 gives a construction of a perpendicular to a line through a given point not

on the line; this result uses a circle (the idea that the circle is constructed with a

compass; of course, a circle was used in the proof of Euclid I.1 as well).

https://faculty.etsu.edu/gardnerr/Geometry/Geometry-notes.htm
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Figure 2.4. Propositions I.9–I.12

Note. Recall that Postulate 4 states: “That all right angles equal one another.”

Ostermann and Wanner explain the significance of Postulate 4 (see pages 33 and

34) as:

“The fourth postulate expressed the homogeneity of the plane, the ab-

sence of any privileged direction, and allows one to compare, add and

subtract the angles around a point.”

Sir Thomas Heath makes a similar comment in his translation of the Elements (see

page 200 of the second edition of his volume 1; his emphasis):

“While this Postulate asserts essential truth that a right angle is a

determinate magnitude so that it really serves as an invariable standard

by which other (acute and obtuse) angles may be measured. . . If the

statement [i.e., Postulate 4] is to be proved, it can only be proved by

the method of applying one pair of right angles to another and so

arguing their equality. But this method would not be valid unless on

the assumption of the invariability of figures, which would therefore
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have to be asserted as an antecedent postulate. Euclid preferred

to assert as a postulate, directly, the fact that all right angles are

equal. . . and hence his postulate must be taken as equivalent to the

principle of invariability of figures or its equivalent, the homogeneity of

space.”

This idea of homogeneity as a property of geometry even holds in the non-Euclidean

cases. To consider a situation where a space is not homogeneous, is not to do ge-

ometry globally! However, “locally” geometry can be (approximately) addressed

in a nonhomogeneous space. This is the realm of differential geometry, where the

curvature can vary with location in the space. For example, a sphere is homoge-

neous and has the same (positive) curvature at all points. However, a torus is not

homogeneous and has different curvature (sometimes positive, sometimes negative,

and sometimes zero) at different points. See my online notes for Differential Geom-

etry (MATH 5310); I also have some more rigorous notes on differential geometry

available.

Note. We denote a right angle, that is a 90◦ angle, by the symbol . When

dealing with a 180◦ angle, Euclid explicitly refers to the amount “two right angles.”

Sometimes this is called a “straight angle.” The next proposition concerns this idea.

Euclid, Book I Proposition 13. Let the line AB cut the line CD. With α and

β as the two resulting angles on the same side of line CD, we have α + β = 2 .

https://faculty.etsu.edu/gardnerr/5310/notes.htm
https://faculty.etsu.edu/gardnerr/5310/notes.htm
https://faculty.etsu.edu/gardnerr/5310/notes-Dodson-Poston.htm
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Euclid, Book I Proposition 14. Let line segment DB and line segment BA

determine an angle β. If segment BC makes an angle α with segment BA where

point C is exterior to the first angle. If α + β = 2 then C lies on the line DB.

See Figure 2.6.

Figure 2.6

Euclid, Book I Proposition 15. If two lines cut one another, they make the

opposite angles equal to one another.

Euclid, Book I Proposition 16. If one side of a triangle is extended at C, the

exterior angle is greater than both angles in the triangle opposite to C.

Note. Figure 2.9 is synopsis of Euclid’s results concerning equal triangles. As we

have seen, Euclid I.4 says that is two sides and an included angle are equal between

two triangles (i.e., side-angle-side of SAS) then the triangles are equal. Euclid I.8

says that if three corresponding sides of two triangles are equal (i.e., side-side-side

or SSS) then the triangles are equal. Euclid I.26 states: “If two triangles have two

angles equal to two angles respectively, and one side equal to one side, namely,

either the side adjoining the equal angles, or that opposite one of the equal angles,
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then the remaining sides equal the remaining sides and the remaining angle equals

the remaining angle.” That is, we have equal triangles under angle-side-angle (or

ASA) and angle-angle-side (or AAS), as illustrated in Figure 2.9 in separate cases.

Ostermann and Wanner feel compelled to emphasize that there is no angle-side-side

(or ASS).

Figure 2.9

Note. Euclid’s Book I Proposition 22 states: “In any triangle the sum of any two

sides is greater than the remaining one.” In our symbols, this is the three claims:

a < b + c, b < c + a, and c < a + b.

A proof of Euclid I.22 is to be given in Exercise 2.12. This is a fundamental result

and is called The Triangle Inequality. You will encounter this in your future math

classes whenever dealing a measure of distance. Distance is measured, in general,

with a metric and a metric, by definition, must satisfy the triangle inequality. You

also see a mention of this in connection with norms in a vector space. For more

details, see my online notes for Linear Algebra (MATH 2010) on Section 1.2. The

Norm and Dot Product (where the Triangle Inequality is addressed in for the norm

on the vector space Rn) and Section 3.5. Inner-Product Spaces (where the Triangle

https://faculty.etsu.edu/gardnerr/2010/c1s2.pdf
https://faculty.etsu.edu/gardnerr/2010/c1s2.pdf
https://faculty.etsu.edu/gardnerr/2010/c3s5.pdf
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Inequality is addressed for theorem induced by an inner product in an abstract

vector space). For more on the Triangle Inequality and metrics, see my online

notes for Introduction to Topology (MATH 4357/5357) on Section 20. The Metric

Topology and my online notes for Complex Analysis 1 (MATH 5510) on Section

II.1. Definitions and Examples of Metric Spaces.

Note. We now turn our attention to parallel lines. First, recall that parallel lines

are lines that do not intersect or, as Euclid puts it:

Definition 23. Parallel straight lines are straight lines which, being

in the same plane and being produced indefinitely in both directions,

do not meet one another in either direction.

The next result addresses the existence of parallel lines.

Euclid, Book I Proposition 27. If some line cuts two line a and b such that

alternate interior angles α and β are equal, then lines a and b are parallel, denoted

a ‖ b.

Note. Euclid’s last result that does not use the Parallel Postulate is the following:

Euclid, Book I Proposition 28. If a straight line falling on two

straight lines makes the exterior angle equal to the interior and opposite

angle on the same side, or the sum of the interior angles on the same

side equal to two right angles, then the straight lines are parallel to one

another.

That is, if γ = β or if α + β = 2 in the following figure, then lines a ‖ b.

https://faculty.etsu.edu/gardnerr/5357/notes/Munkres-20.pdf
https://faculty.etsu.edu/gardnerr/5357/notes/Munkres-20.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/II-1.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/II-1.pdf
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Notice that the conclusions of both Euclid I.27 and I.28 are “then the lines are

parallel.” Going in the other direction starting with parallel line and drawing

conclusions about angles requires the Parallel Postulate (Postulate 5).

Note. None of the results in Book I, up through Proposition 28, use Postulate 5

(The Parallel Postulate). It seems that Euclid is postponing the use of Postulate

5 as long as possible. Notice the clunky nature of the statement of Postulate 5

as compared to the other postulates and the common notions. Geometry based

on the first four postulates of Euclid (more accurately, a geometry based on an

axiomatic systems which excludes Postulate 5) is called absolute geometry or neutral

geometry. Both Euclidean geometry and the version of non-Euclidean geometry

called hyperbolic geometry are examples of neutral geometry. The version of non-

Euclidean geometry called elliptic geometry (a special case of which is spherical

geometry) does not include Euclid I.16 (an exterior angle of a triangle at point C

is greater than both angles in the triangle opposite to C) and so is not an example

of neutral geometry (Ostermann and Wanner mention this in passing on page 35).

Since the proof of the existence of parallel lines in Euclid I.27 uses Euclid I.16, then

we may not have the existence of parallel lines in elliptic geometry (and, in fact,
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parallel lines do not exist in elliptic geometry. For a brief discussion of this, see my

online presentation on A Quick Introduction to Non-Euclidean Geometry. Recall

the statement of the Parallel Postulate:
Postulate 5, The Parallel Postulate. That, if a straight line falling

on two straight lines makes the interior angles on the same side less

than two right angles, the two straight lines, if produced indefinitely,

meet on that side on which are the angles less than the two right angles.

Note. Euclid’s first result which requires the use of the Parallel Postulate is the

following: Euclid’s next result is a converse of Euclid I.27, as follows.

Euclid, Book I Proposition 29. Parallel lines cut by some line, have alternate

interior angles are equal.

Note. For about 2000 years, attempts were made to either prove the Parallel

Postulate or prove something like Euclid I.29 without using the Parallel Postulate.

After all, these are intuitively obvious claims! But what makes them “obvious”

is our prejudice for Euclidean geometry based on our experience and intuition.

These attempts led to consideration of the angles in a quadrilateral. In particular,

if we consider a quadrilateral with base angles as right angles and sides rising

from the base of the same length then, in Euclidean geometry, the two “summit”

angles are right angles (and if the summit angles are right angles, then the Parallel

Postulate can be proved). Such a quadrilateral is called a Saccheri quadrilateral

https://faculty.etsu.edu/gardnerr/noneuclidean/non-Euclid-highschool.pdf
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(after the work of Giovanni Girolamo Saccheri, September 5, 1667–October 25,

1733). Three 19th century mathematicians are credited with founding the version

of the non-Euclidean geometry called hyperbolic geometry. The are Carl Frederick

Gauss (1777–1855), Nicolai Lobachevsky (1793–1856), and Johann Bolyai (1802–

1860). Letters of correspondence by Gauss indicate that he came to started to work

on hyperbolic geometry in the 1790s and had developed fundamental theorems in

this new geometry some time shortly after 1813. However, he never published his

results. Lobachevsky (a Russian) published his “On the Principles of Geometry” in

the Kasan Bulletin in 1829-30 and so was the first to publish results on hyperbolic

geometry. This is recognized today in that hyperbolic geometry is sometimes called

“Lobachevskian geometry.” However, Lobachevsky’s work gained little attention

(and since it was published in Russian, it was not widely circulated in western

Europe; he would later publish his work in German and French). Bolyai, unaware

of the work of Gauss or Lobachevsky, in 1832 published “The Science of Absolute

Space” on hyperbolic geometry as an appendix to a book that his father authored.

There was controversy as to who deserved credit for being the first to consider

hyperbolic geometry. A simplified version of the history is that Gauss was first

(but never published), Lobachevsky was the first to publish but may have been

influenced by some of Gauss’s ideas (they had corresponded). Bolyai seems to have

worked independently, but he seems to remain “number 3” in this trio in terms of

credit. For a more detailed discussion (and references), see my online presentation

on Hyperbolic Geometry.

https://faculty.etsu.edu/gardnerr/noneuclidean/hyperbolic.pdf
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Carl Frederick Gauss Nicolai Lobachevsky Johann Bolyai

4/20/1777–2/23/1855 12/1/1793–2/24/1856 12/15/1802–1/27/1860

Images from the MacTutor History of Mathematics Archive (accessed 1/19/2022)

This type of event where multiple mathematicians have similar ideas at the same

time (they are not working in a mathematical vacuum) is not unprecedented. This

occurred in the 1530s and 1540s when Tartaglia and Gerolamo Cardano argued

over priority of the quartic equation (sort of a quadratic formula for 4th degree

polynomials) and again around 1700 with the work of Newton and Leibniz on

calculus. In these cases (as also, to a degree, with Gauss) arguments, bitterness,

and unprofessional behavior are part of the history.

Note. The next result shows that the relationship of “parallel” between lines is

transitive.

Euclid, Book I Proposition 30. For any three (distinct) lines a, b, c, if a ‖ b and

b ‖ a then a ‖ c.

Euclid, Book I Proposition 31. To draw a parallel to a given line a through a

given point A not on the a.

https://mathshistory.st-andrews.ac.uk/
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Note. We mentioned Proclus’ Commentary on Euclid’s Elements in Introduction

to Chapter 2. In his “Propositions: Part Two” he comments that in Euclid I.31

there cannot be two lines through point A parallel to line a (see Proclus’ page

376). He gives the brief argument that if there were two such lines then the two

lines would be parallel to each other (by Euclid I.30), but then there would be two

parallel lines which intersect at point A, a contradiction. This result is often called

Playfair’s Axiom because it appeared in John Playfair’s Elements of Geometry in

1795. Playfair states his axiom as:

Axiom 11. Two straight lines which intersect one another, cannot be

both parallel to the same straight line.

An 1846 version of Playfair’s book is online at Archive.org (accessed 1/20/2022).

If we take Playfair’s Axiom that there is exactly one line parallel to line a through

point A, then we can derive Euclid’s Parallel Postulate as a theorem. The appeal of

Playfair’s approach is that it is easy to negate Playfair’s Axiom (and hence to negate

Euclid’s Parallel Postulate). We see that we have two choices for the negation:

(1) there are no lines through A parallel to a, or (2) there are two (or more)

lines through A parallel to a. Each then leads to two versions of non-Euclidean

geometry: (1) elliptic geometry, and (2) hyperbolic geometry, respectively. This

is the approach taken in my online presentation: A Quick Introduction to Non-

Euclidean Geometry. Sometimes in a high school geometry class, some version of

Playfair’s Axiom is used in place of Euclid’s Parallel Postulate.

Note. Book I Proposition 32 states that the sum of the angles of a triangle is

equal to two right angles: α+β +γ = 2 . Ostermann and Wanner state (see page

https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-Chapter-2.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-Chapter-2.pdf
https://archive.org/details/elementsgeometr05playgoog/page/n20/mode/2up
https://faculty.etsu.edu/gardnerr/noneuclidean/non-Euclid-highschool.pdf
https://faculty.etsu.edu/gardnerr/noneuclidean/non-Euclid-highschool.pdf
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38): “This is a very old theorem, certainly known to Thales.” The proof ultimately

depends on Euclid’s Parallel Postulate. Interestingly, in elliptic geometry the sum

of the angles of a triangle is greater than 2 , and in hyperbolic geometry the sum

of the angles of a triangle is less than 2 . Surprisingly, in non-Euclidean geometry

the angle sum depends on the size of the triangle (implying some fundamental unit

of length in these geometries).

Note. The remainder of Book I addresses parallelograms, areas of parallelograms

and triangles, the Pythagorean Theorem Proposition 47), and its converse (Propo-

sition 48, the final proposition in Book I). We considered Euclid’s proof of the

Pythagorean Theorem in our Section 1.7. The Pythagorean Theorem.

Note. Book II contains geometrical algebra. That is, algebra expressed in geomet-

ric terms. Some of our algebraic terms today, such as “squaring” and “cubing,”

reflect this interpretation. Book II is much shorter than Book I, only containing

14 propositions. Our current algebraic notation dates from much after the time of

Euclid. However, in this discussion we express Euclid’s results in modern notation

and give corresponding geometric figures. Euclid II.1 states:

Book II, Proposition 1. If there are two straight lines, and one of

them is cut into any number of segments whatever, then the rectangle

contained by the two straight lines equals the sum of the rectangles

contained by the uncut straight line and each of the segments.

Euclid II.4 states:

https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-1-7.pdf
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Book II, Proposition 4. If a straight line is cut at random, the

square on the whole equals the squares on the segments plus twice the

rectangle contained by the segments.

These propositions are illustrated in the following diagrams (from page 38):

Note. Euclid II.5 geometrically proves the algebraic relationship a2 − b2 = (a +

b)(a − b). See Figure 2.14 (left). Euclid II.13 geometrically proves that 2uc =

b2 + c2 − a2 where segment u results from an altitude from a vertex of a triangle

to the opposite side, as shown in Figure 2.14 (middle); Euclid’s proof employs the

Pythagorean Theorem.

Figure 2.14
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