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Section 3.1. The Parabola.

Note. As described in the introduction to Chapter 3, Menaechmus introduced a

parabola as an intersections of a plane with cone. We’ll see in Figure 3.2 (center)

below that the plane must be parallel to some line on the cone which passes through

the vertex of the cone (such a line is called a generator of the cone). The result

we give (which is stated as a definition) is due to Pappus of Alexandria (circa 290–

circa 350) and appeared in his Mathematical Collection, Book VII, Proposition 238.

Though I cannot find an image of Pappus online (the images in these notes are all

referenced, but their historical accuracy is questionable). However, some of his

work is still in print, including Book VII.

From Amazon.com (accessed 9/21/2021)

Definition. Let d be a line, called the directrix, and F a point, called the focus, at

distance p from the directrix. The locus of all points P that have the same given

distance ` from F as from f is called a parabola. See Figure 3.1 (left).

https://www.amazon.com/Pappus-Alexandria-Book-7-Collection/dp/0387962573
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Note 3.1.A. The definition above is the same one used, for example, in Calculus

3 (MATH 2110). See my online notes for this class on Section 11.6. Conic Sections.

A parabola is symmetric with respect to a line perpendicular to the directrix which

passes through the focus. This line is called the axis of the parabola and the point

at which it intersects the parabola is the vertex of the parabola. We can derive

an equation for a parabola using Figure 3.1 (left). Let point P = (x, y) be on the

parabola in the coordinate system with its origin at the vertex and with the x-axis

horizontal. Notice for point P in the figure, the distance ` from P to F is the same

as the distance from P to the directrix and this distance is ` = x + p/2. Now in

the right triangle with vertices P and F and hypotenuse given by the line segment

PF , the Pythagorean Theorem gives that(
x − p

2

)2
+ y2 = `2 =

(
x +

p

2

)2
or x2 − px +

p2

4
+ y2 = x2 + px +

p2

4
or y2 = 2px.

The value 2p is the length of a vertical line segment through the focus from one

side of the parabola to the other (in Figure 3.1, left); this is called the latus rectum

and value p is the semi latus rectum.

https://faculty.etsu.edu/gardnerr/2110/notes-12e/c11s6.pdf
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Note 3.1.B. As the following figure shows, any point P (x, y) on the parabola

y2 = 2px determines a rectangle of width x and height 2p, and a square of width

y and height y. Since the rectangle has area 2px and the square has area y2, then

these areas are the same since x and y are related by the equation y2 = 2px.

As stated on page 62 of Ostermann and Wanner, according to Henry Liddell and

Robert Scott’s Greek-English Lexicon (Oxford Press, 2016), “parabola” (in Greek,

παραβoλή) means comparison, juxtaposition, or analogy. The equality of the areas

of the rectangle and square motivated Apollonius of Perga (circa 262 bce–circa 190

bce) to name the curve a parabola.

Note. Paraphrasing Apollonius himself, from Thomas Heath’s Apollonius of Perga,

Treatise on Conic Sections, Edited in Modern Notation (Cambridge University

Press, 1896), we have the following (where we have changed his labels of points so

that they agree with the above picture; see Apollonius’ page 9):
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It follows that the square on any ordinate y to the axis of the parabola

[Apollonius calls the axis the “fixed diameter”] is equal to a rectangle

applied (παραβάλλειν) to the fixed straight line of length 2p [the latus

rectum] to the fixed straight line drawn at right angles to the axis of the

parabola, with altitude equal to the corresponding abscissa x. Hence

the section is called a Parabola.

Note. In the next result, the intersection of a plane with a cone of Menaechmus

is shown to give the same curve as the one given by Pappus’ definition. The proof

we present is due to Germinal Dandelin (April 12, 1794–February 15, 1847) and

presented in his “Memoir on some remarkable properties of the parabolic focale [i.e.,

oblique strophoid],” Nouveaux mémoires de l’Académie royale des sciences et belles-

lettres de Bruxelles (in French), 2, 171-200 (1822). The technique used employs

so-called “Dandelin spheres.” Credit for this approach is also sometimes given to

Adolphe Quetelet based on his “Dissertatio mathematica inauguralis de quibusdam

locis geometricis nec non de curva focali [Inaugural mathematical dissertation on

some geometric loci and also focal curves],” doctoral thesis (University of Ghent,

Belgium, 1819). This is also the proof technique used in these notes to show that

an ellipse and hyperbola also result from conic sections, as is shown in Theorem

3.2.A and Theorem 3.2.B.

Theorem 3.1. (Apollonius’ Proposition I.11 in Treatise on Conic Sections)

If a cone is cut by a plane that has the same slope as the generators of the cone,

then the intersection is a parabola.
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Note 3.1.C. We now consider lines tangent to a parabola. This is straightforward

in calculus using derivatives. But here we give an argument based on Euclidean

geometry and a construction of the tangent line that could be performed with a

compass and straightedge.

Let P be an arbitrary point on the parabola and let line t be the bisector of the

angle BPF , as given in Figure 3.1 (center). For Q another point on line t, we

have the lengths of segments BQ and QF are the same since triangles BPQ and

FPQ are congruent (by Side-Angle-Side, say). Now segment QF is longer that

the distance from Q to the directrix line d, since BQ (which is of the same length

at QF ) is not orthogonal to d (and so is longer that the distance from Q to the

directrix). So all points of line t (other than point P ) lie outside the parabola.

Therefore, line t is tangent to the parabola at point P .
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Note. Euclid I.15 states: “If two straight lines cut one another, then they make

the vertical angles equal to one another.” So if we extend the line segment BP in

Figure 3.1 (center), then we can use it to represent a ray of light approaching the

parabola from the right. The Law of Reflection states that the angle of incidence

equals the angle of reflection. So if the parabola is a reflective surface, then when

a ray of light comes in from the right parallel to the axis then its angle of incidence

will be α and so its angle of reflection will also be α (see Figure 3.1, right). Then,

as just argued, the ray of light will travel to the focus (following the path from

point P to point F ). This can be shown using calculus as well, as we show next.

Note 3.1.D. In Calculus 3 (MATH 2110), the reflective property of a parabola

is addressed in Section 11.6. Conic Sections. In Exercise 81 from this section of

Thomas’ Calculus, Early Transcendentals, 12th Edition (see page 666), we have

the following. Notice that Ostermann and Wanner take the distance between the

vertex and focus as p/2, whereas Thomas’ Calculus takes this distance to be p. So

our equation y2 = 2px is equivalent to their equation y2 = 4px.

Exercise 11.6.81. The accompanying figure shows a typical point P (x0, y0) on

the parabola y2 = 4px. The line L is tangent to the parabola at P . The parabola’s

focus lies at F (p, 0). The ray L′ extending from P to the right is parallel to the

x-axis. We show that light moving to the left along L′ reflects off the parabola at

point P to then travel to the focus F by showing that β equals α.

https://faculty.etsu.edu/gardnerr/2110/notes-12e/notes.htm
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Solution. First, the slope of line L equals that tangent of β. Since y2 = 4px

then, by implicit differentiation, 2y dy/dx = 4p or dy/dx = 2p/y. So at point

P (x0, y0) the slope of a tangent line to the parabola is (dy/dx)|(x,y)=(x0,y0) = 2p/y0,

and hence tan β = 2p/y0. Similarly, tan φ is the slope of the line through points

F (p, 0) and P (x0, y0). That is, tan φ = (y0 − 0)/(x0 − p) = y0/(x0 − p). Since

α + β + (π/2 − φ) = π/2, then we have α = φ − β. By the trigonometric identity

tan(θ0 − θ1) =
tan θ0 − tan θ1

1 + tan θ0 tan θ1
we now have

tan α = tan(φ − β) =
tan φ − tan β

1 + tan φ tan β

=
y0/(x0 − p) − 2p/y0

1 + (y0/(x0 − p))(2p/y0)
=

y0 − 2p(x0 − p)/y0

(x0 − p) + 2p

=
y0 − 2px0/y0 + 2p2/y0

x0 + p
=

y2
0 − 2px0 + 2p2

(x0 + p)y0

=
(4px0) − 2px0 + 2p2

(x0 + p)y0
since y2

0 = 4px0

=
2px0 + 2p2

(x0 + p)y0
=

2p(x0 + p)

(x0 + p)y0
=

2p

y0
.

Therefore, tan β = 2p/y0 = tan α and, since α and β are both acute, we have
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α = β. Since the angle of incidence is β and α = β, then α is the angle of reflection

(by the Law of Reflection) and hence light traveling to the left along L′ reflects off

of the parabola at point P and goes to the focus F , as claimed. �

Revised: 9/19/2023


