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Section 3.2. The Ellipse.

Note. We again consider the intersection of a plane with a cone. In the previous

section, we considered the case where the plane was parallel to some generator of

the cone (and this resulted in a parabola). In this section we consider the case

where the plane is “less steep” than the generators of the cone (see Figure 3.3,

left). Notice that this results in curve of intersection in the plane which is bounded

(see Figure 3.3 right for a projection of the curve onto a vertical plane).

The next definition is, according to Osermann and Wanner, due to Pappus of

Alexandria (circa 290–circa 350). A specific reference is not given, but presumably

it appeared in his Mathematical Collection, as did the definition of a parabola.

Definition. Let d be a line (called the directrix) and F a point (called the focus)

at distance p/e from the directrix, where 0 < e < 1 is the eccentricity. The locus

of all points P for which the ratio of the distances to the point F and to the line

d equals e is called an ellipse. See Figure 3.4 (left).
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Note. Notice that if we consider e = 1, then the above definition reduces to

the definition of a parabola. Define the point on the ellipse which is closest to

the focus as the vertex, which we denote V . Notice that the point V must be a

distance of p/(1 + e) from focus F , and V must be a distance of (p/e)/(1 + e)

from the directrix d, so that the ratio of the distance from V to F to the distance

from V to d is
p/(1 + e)

(p/e)/(1 + e)
= e, as required. See Figure 3.4 (left). Let point

P = (u, y) be on the ellipse in the coordinate system with its origin at the vertex

and with the u-axis horizontal. We consider the right triangle with vertices P and

F and hypotenuse given by the line segment PF . The legs of the triangle are then

of lengths u − p/(1 + e) and y, and we let the hypotenuse have length `. Notice

that we then have that point P is a distance of `/e from directrix d, and that
`

e
= u +

p/e

1 + e
and so ` = e

(
u + p/e

1+e

)
. So by the Pythagorean Theorem we have

(
u− p

1 + e

)2

+ y2 = `2 = e2
(

u +
p/e

1 + e

)2

=

(
eu +

p

1 + e

)2

,

or u2 − 2up

1 + e
+

p2

1 + e2 − e2u2 − 2eup

1 + e
− p2

1 + e2 + y2 = 0,

or u2 − 2up(1 + e)

1 + e
− e2u2 + y2 = 0 or (1− e2)u2 − 2up + y2 = 0. (3.3)
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Note 3.2.A. As the following figure shows, any point P (u, y) on the ellipse
x2

a2 +

y2

b2 = 1 determines a rectangle of width u and height 2p, and a square of width

y and height y. Since the rectangle has area 2up and the square has area y2,

then the area of the square is less than the area of the rectangle because y2 =

2up − (1 − e2)u2 (where 0 < e < 1) by (3.3). As stated on page 64 of Ostermann

and Wanner, according to Henry Liddell and Robert Scott’s Greek-English Lexicon

(Oxford Press, 2016), “ellipse” (in Greek,
,
ελλῐπής) means leaving out, omitting,

or lack. The inequality given by the fact that the are of the square is less than the

area of the rectangle motivated Apollonius of Perga (circa 262 bce–circa 190 bce)

to name the curve an ellipse.

Note. Paraphrasing Apollonius himself, from Thomas Heath’s Apollonius of Perga,

Treatise on Conic Sections, Edited in Modern Notation (Cambridge University

Press, 1896), we have the following (where we have changed his labels of points so

that they agree with the above picture; see Apollonius’ page 12):



Section 3.2. The Ellipse 4

Thus the square on the ordinate (that is, the square with area y2) is less

than a rectangle whose height is equal to the latus rectum 2p and whose

base is the abscissa x. [Apollonius actually speaks of the equality of

the square and a rectangle whose height falls short of the latus rectum

by a certain amount. In this way he is dealing with an equation of the

form y2 = px− (p/d)x2.] The section is therefore called an Ellipse.

Note. The next result shows that the intersection of a plane (of certain steepness)

with a cone produces an ellipse. This allows us to connect Menaechmus’ approach

to ellipses with the idea of a locus of points whose distances from two fixed points

(foci) have a constant sum. We discuss below how these ideas are combined with

the directrix and focus approach given above. The result appears in Apollonius’

Treatise on Conics as Proposition III.52. The proof uses Dandelin spheres, as

did Theorem 3.1 and as will Theorem 3.3.A. In fact, the next result appears as

Exercise 5.10 of Keith Kendig’s Conics, The Dolciani Mathematical Expositions

#29, Mathematical Association of America (2005).

Theorem 3.2.A. (Apollonius’ Proposition III.52 in Treatise on Conic Sections)

The intersection of a cone and a plane that is less steep than the generators of the

cone is a locus of all points in a plane whose distances from two fixed points in the

plane (called foci) have a constant sum.
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Note. The parameter e in the proof of Theorem 3.2.A is the eccentricity of the

ellipse. The line of intersection of plane π and the plane containing circle C is the

directrix of the ellipse. Instead of Pappus’ definition of an ellipse in terms of a

focus and a directrix, we can take the following as an alternate definition.

Definition. A ellipse is the locus of all points P in a plane whose distances from

two fixed points in the plane have a constant sum.

Note 3.2.B. In fact, it is this second definition that we use in Calculus 3 (MATH

2110; see my online notes for Calculus 3 on Section 11.6. Conic Sections). It is

shown there that the formula for an ellipse is equivalent to the formula given in

(3.3), though some translation may be necessary to get the formulas to agree. This

result, combined with Theorem 3.2.A, shows that the two definitions of an ellipse

are equivalent. Since the proof of Theorem 3.2.A shows that the intersection of a

plane with a cone (where the plane is “less steep” than the generators of the cone)

is a locus of points whose distances from two points in the plane is a constant sum,

then we have that such an intersection (or “conic section”) is a locus of points that

satisfies the two definition of an ellipse given above. That is, we have unified the

following three types of definitions of an ellipse:

1. as the intersection of a cone and a “less steep” plane (Menaechmus’ definition),

2. in terms of two fixed points, foci, and the sum of distances being constant (the

second definition; Apollonius’ Proposition III.52), and

3. in terms of a directrix and focus (Pappus’ definition).

https://faculty.etsu.edu/gardnerr/2110/notes-12e/c11s6.pdf
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Note. We now consider compass and straight edge constructions of tangents to an

ellipse, as we did for a parabola in Note 3.1.C. The technique is stated in Apollonius’

Treatise on Conic Sections:

Theorem III.48. (Apollonius, Treatise of Conics)

For an ellipse (and a hyperbola), the focal distances of P make equal angles with

the tangent at that point.

The argument for this is based on Figure 3.4, right (below). Let point P on the

ellipse. Join P to F and F ′ with segments of lengths ` and `′, respectively. Extend

F ′P by the distance ` to a point B. Bisect angle ∠BPF with line t. For any

other point Q on t, the triangle 4BQF is isosceles, since triangles 4BQP and

4FQP are congruent (by SAS, since they share side QP , both sides BP and FP

are length `, and angles ∠BPQ and ∠FPQ are equal by the bisection). Therefore

BQ and QF and the same length, say m. With m′ as the length of F ′Q, we have

m + m′ is longer than F ′B, since points B, Q, and F ′ are not collinear (By Euclid

Proposition I.20, the sum of any two sides of a triangle is greater than the remaining

side; consider triangle 4BQF ′). Therefore all points on line T , other than point

P , lie outside the ellipse so that t is tangent to the ellipse at point P .
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Note 3.2.C. The acute angle θ between two nonperpendicular, nonvertical inter-

secting lines of slopes m1 and m2 satisfies the equation tan θ =

∣∣∣∣ m1 −m2

1 + m1m2

∣∣∣∣. This

follows from the summation formula for tangent, where the absolute value is needed

since the angle is required to be acute (the angle “between” two lines does not have

an orientation, but if we interchange m1 and m2 then tan θ changes by a negative

sign).

Denote the foci as F1(−c, 0) and F2(c, 0) where c > 0. Differentiating (implicitly)

the formula for the ellipse gives
2x

a2 +
2y

b2

dy

dx
= 0 or

dy

dx
=
−2x/a2

2y/b2 =
−xb2

ya2 . So the

slope of line L in in the above figure is mL =
dy

dx

∣∣∣∣
(x,y)=(x0,y0)

=
−x0b

2

y0a2 . The slope of

←−→
F1P is m←−→

F1P
=

y0 − 0

x0 − (−c)
=

y0

x0 + c
. The slope of

←−→
F2P is m←−→

F2P
=

y0 − 0

x0 − c
=

y0

x0 − c
.

We now have tan α as

tan α =

∣∣∣∣∣ mL −m←−→
F1P

1 + mLm←−→
F1P

∣∣∣∣∣ =

∣∣∣∣∣
−x0b

2

y0a2 − y0

x0+c

1 + −x0b2

y0a2
y0

x0+c

∣∣∣∣∣
=

∣∣∣∣x0b
2(x0 + c) + y0(y0a

2)

y0a2(x0 + c)− x0b2y0

∣∣∣∣ =

∣∣∣∣ x0b
2 + x0b

2c + y2
0a

2

x0y0a2 + y0a2c− x0y0b2

∣∣∣∣
=

∣∣∣∣ a2b2 + x0b
2c

x0y0(a2 − b2) + y0a2c

∣∣∣∣ since
x2

0

a2 +
y2

0

b2 = 1 so that x2
0b

2 + y2
0a

2 = a2b2

=

∣∣∣∣ b2(a2 + x0c)

y0c(x0c + a2)

∣∣∣∣ =

∣∣∣∣ b2

y0c

∣∣∣∣ since c2 = a2 − b2.
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Similarly,

tan β =

∣∣∣∣∣ mL −m←−→
F2P

1 + mLm←−→
F2P

∣∣∣∣∣ =

∣∣∣∣∣
−x0b

2

y0a2 − y0

x0−c

1 + −x0b2

y0a2
y0

x0−c

∣∣∣∣∣
=

∣∣∣∣x0b
2(x0 − c) + y0(y0a

2)

y0a2(x0 − c)− x0b2y0

∣∣∣∣ =

∣∣∣∣ x0b
2 − x0b

2c + y2
0a

2

x0y0a2 − y0a2c− x0y0b2

∣∣∣∣
=

∣∣∣∣ a2b2 − x0b
2c

x0y0(a2 − b2)− y0a2c

∣∣∣∣ since
x2

0

a2 +
y2

0

b2 = 1 so that x2
0b

2 + y2
0a

2 = a2b2

=

∣∣∣∣ b2(a2 − x0c)

y0c(x0c− a2)

∣∣∣∣ =

∣∣∣∣−b2

y0c

∣∣∣∣ since c2 = a2 − b2.

Therefore tan α = tan β and, since α and β are acute, then α = β. If a ray of

light is emitted at focus F1 and reflects off of the ellipse at point P , the the angle

of incidence is α and since α = β then the angle of reflection is β (by the Law

of Reflection) and hence the light will travel to the other focus at F2. This is the

reflective property of the ellipse.

Note. As we see in Calculus 3 (in Section 11.6. Conic Sections)) and used in the

previous note, an ellipse with foci at (−c, 0) and (c, 0) in Cartesian coordinates has

a formula of the form
x2

a2 +
y2

b2 = 1 where for a ≥ b we have the sum of distances as 2a

and b2 = a2− c2. The eccentricity is e = c/a and the ellipse has vertices at (−a, 0),

(a, 0), (0, b), and (0,−b). This is calculated in Calculus 3 using the definition

of an ellipse in terms of the sum of distances from the foci being constant (the

second definition; Apollonius’ Proposition III.52). Eccentricities and directrices

are discussed in Calculus 3 in Section 11.7. Conic Sections in Polar Coordinates.

Cartesian coordinates did not historically appear until René Descartes (March 31,

1596–February 11, 1650) introduced them in his La Géométrie which appeared

as a supplement to his Discours de la méthode (1637). None-the-less, we take

https://faculty.etsu.edu/gardnerr/2110/notes-12e/c11s6.pdf
https://faculty.etsu.edu/gardnerr/2110/notes-12e/c11s7.pdf
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the equations as valid and extract some observations about ellipses based on the

equations. An ellipse has two axes of symmetry, one is the line
←→
FF ′ and the other

is the perpendicular bisector of segment FF ′. The long axis of an ellipse is the

major axis and it is of length 2a (assuming a ≥ b), which is the constant sum of

distances from the foci. The short axis is the minor axis and is of length 2b.

With point P on the second symmetry axis as shown in Figure 3.5(c), we see that

b2 = a2−c2 or c2 = a2−b2; we call b the semi-minor axis and a the semi-major axis.

With point P vertically above F as shown in Figure 3.5(d), we have the semi-latus

rectum p as the length of PF . Then (2a−p)2 = p2 +(2c)2, which gives a2−ap = c2

or b2 = ap (because b2 = a2 − c2).

Note. As a passing observation, we note that Archimedes (287 bce–212 bce)

proved that the area of the ellipse with semi-major axis of length a and semi-minor

axis of length b is πab. He states this as Proposition 4 in his On Conoids and

Spheroids as: “The area of any ellipse is to that of the auxiliary circle as the minor

axis is to the major axis.” The “auxiliary circle” is a circle of radius a containing

the ellipse. So the auxiliary circle has area πa2, and multiplying this by b/a (“as

the minor axis to the major axis”) gives and area of the ellipse of (πa2)(b/a) = πab.



Section 3.2. The Ellipse 10

Notice that the area of the ellipse is also π/4 times the area of the rectangle inscribed

around the ellipse. Archimedes uses the method of exhaustion by which he shows

that the area cannot be strictly greater than πab nor can it be strictly less than πab,

so that it must be exactly πab. He does this by circumscribing polygons around

and inscribing polygons in the auxiliary circle, then scaling them (in one direction)

by a factor of b/a to produce circumscribed and inscribed polygons in ellipse. Since

he can find the area of a polygon, then he can perform his calculations. See Figure

3.6.

Archimedes takes a similar approach in his approximation of π as between 3 10
71 and

3 1
7 ; see my online presentation “Archimedes: 2,000 Year Ahead of His Time” in

PowerPoint presentation along with a transcript in transcript of the presentation

in PDF.

Note. Proclus gives a construction of an ellipse “with a stick.” Consider segment

(or “stick”) DE of length a + b which slides with its ends on the axes, as shown in

https://faculty.etsu.edu/gardnerr/talks/Archimedes.pptx
http://faculty.etsu.edu/gardnerr/talks/Archimedes.pdf
http://faculty.etsu.edu/gardnerr/talks/Archimedes.pdf
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Figure 3.8 (right). The point P on the segment at a distance a from D and b from

E will trace an arc of the ellipse with semi-axes a and b, respectively.

Note 3.2.D. Proclus’ construction of an ellipse involves two concentric circles, one

of radius a and one of radius b. The ray
−−−→
OBA rotates around point O producing

points A and B. Point P is determined by projecting point A vertically and point

B horizontally, as given in Figure 3.7(a).
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We represent the circles parametrically in terms of angle θ as (a cos θ, a sin θ) and

(b cos θ, b sin θ). Then the points P are of the form (x, y) = (a cos θ, b sin θ). There-

fore all points satisfy

x2

a2 +
y2

b2 =
(a cos θ)2

a2 +
(b sin θ)2

b2 = cos2 θ + sin2 θ = 1.

Therefore, the points P lie on the ellipse. In fact, (a cos θ, b sin θ) is a parameteri-

zation of the ellipse. This construction can also be used to construct tangents to

an ellipse. The two diameters of the circle of radius a resulting from line segments

OA and OA′ yield the diameters of the ellipse that result from the corresponding

line segments OP and OP ′ in Figure 3.7(a). Such diameters of the ellipse are called

conjugate diameters of the ellipse (they are not themselves orthogonal, unless they

coincide with the diameters of the circle). Apollonius’ Proposition II.6 in his Trea-

tise on Conic Sections shows that each diameter is parallel to the tangents at the

endpoints of its conjugate diameter and cuts its conjugate diameter in the point

O. That is, a tangent to the ellipse of Figure 3.7(a) at point P ′ is parallel to OP

(and a tangent at point P is parallel to OP ′). See Figure 3.7(b).
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Note. In Note 3.2.D we saw how to find conjugate diameters of an ellipse (from

which we can find tangents to the ellipse at a given point). We now consider the

inverse problem of given two conjugate diameters of an unknown ellipse to find

the semi-axes of the ellipse. The construction starts by rotating one semi-diameter

through a right angle. Semi-diameter OP ′ (along with triangle 4A′P ′B′; we do

not know this triangle since we do not already know the semi-diameters a and b) of

Figure 3.7(a) (see below) is rotated through a right angle in the clockwise direction.

This gives the segment OQ (and triangle 4AQB; again, unknown) of Figure 3.8.

In this way, the two unknown right triangles meet up on their hypotenuses to form

a rectangle. (It seems that we now know that Q and P are opposite corners of

a rectangle and that we can next find points A and B that determine the semi-

diameters a and b, similar to the horizontal and vertical projections that allowed

us to find point P in Note 3.2.D, but a different approach is given in Ostermann

and Wanner.) Define point M as the midpoint between points P and Q. We

now know that M is at a distance of (a + b)/2 from point O. Draw circle C

with center M that passes through point O. We now know that this circle has

radius (a + b)/2. Define point E as the other point of intersection of circle C and

the horizontal line through O, and define point D as the point opposite E on C.

We now know that QP = a − b (it equals AB) and MD = ME = (a + b)/2,

so that PE = ME − MP = ME − 1
2QP = (a + b)/2 − (a − b)/2 = b. Since

PD = PM + MD = 1
2PQ = (a + b)/2 + (a− b)/2 = a. So this construction gives

the semi-axes of the ellipse as PE = b and PD = a.
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Parts of this construction are due to Euler and Frézier (the idea of rotating the

semi-diameter), but Ostermann and Wanner say that it is attributed to “Daniel

Rytz” since 1845. However, Wikipedia reports that the proof is due to “David Rytz

von Brugg” (April 1, 1801–March 25, 1868). See the Wikipedia pages on David

Rytz and Rytz’s Construction (accessed 5/6/2023). A minor point. . .

Revised: 9/19/2023

https://en.wikipedia.org/wiki/David_Rytz
https://en.wikipedia.org/wiki/David_Rytz
https://en.wikipedia.org/wiki/Rytz%27s_construction

