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Section 4.2. The Archimedean Spiral.

Note. According to E.T. Bell’s Men of Mathematics (Simon and Schuster, 1937)

page 20, “Any list of the three ‘greatest’ mathematicians of all history would include

the name of Archimedes. The other two usually associated with him are Newton

(1642–1727) and Gauss (1777–1855).” Archimedes of Syracuse (287 bce–212 bce)

made substantial contributions to geometry (notice that he lived most of his life

after the estimated death of Euclid [circa 325 bce–circa 265 bce]).

MacTutor History of Mathematics Archive biography

of Archimedes (accessed 5/9/2023)

Using the method of exhaustion he established many of the formula for areas and

volumes that you learn in high school (such as the area of an ellipse and the

volume of a cone). In this way, he was very close to establishing integral calculus

(and the Riemann integral) about 2,000 years before it formally entered the realm

of mathematics! He was also reported to have designed various practical machines,

such as the Archimedean screw for pumping water, and machines of war. We

leave a detailed biography the History of Mathematics class (MATH 3040; see

https://mathshistory.st-andrews.ac.uk/Biographies/Archimedes/
https://mathshistory.st-andrews.ac.uk/Biographies/Archimedes/
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my online notes for that class on Section 6.2. Archimedes) and the supplement to

this section, Archimedes: 2,000 Year Ahead of His Time (in PowerPoint, with a

transcript available in PDF).

Note. In this brief section, we consider some of Archimedes’ studies of tangents and

areas of the Archimedean spiral (as it is called today). This worked is contained

in his On Spirals, which has survived and is part of The Works of Archimedes,

edited by Thomas Heath (Cambridge University Press, 1897). This is still in print

by Dover publications; On Spirals appears on pages 151 to 188. On page 165, the

following definition of Archimedes is given:

“If a straight line drawn in a plane revolve at a uniform rate about one

extremity which remains fixed and return to the position from which

it started, and if, at the same time as the line revolves, a point move

at a uniform rate along the straight line beginning from the extremity

which remains fixed, the point will describe a spiral in the plane.”

Ostermann and Wanner describe this in modern terms as (see page 81): “Consider a

ray that rotates at constant angular velocity around the origin. Let P be a point on

the ray, that moves away from the origin at constant speed. Then the locus of P is

a curve called an Archimedean spiral, see Fig. 4.4, left [below].” Neither of these are

rigorous mathematical definitions by today’s standards, due to the reference to the

informal ideas of movement and time. Of course Archimedes did not have access to

Cartesian coordinates (due to René Descartes [March 31, 1596–February 11, 1650],

who introduced them in his La Géométrie which appeared as a supplement to his

Discours de la méthode in 1637) nor to polar coordinates. With polar coordinates

https://faculty.etsu.edu/gardnerr/3040/Notes-Eves6/Eves6-6-2.pdf
https://faculty.etsu.edu/gardnerr/talks/Archimedes.pptx
http://faculty.etsu.edu/gardnerr/talks/Archimedes.pdf
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(r, θ) we can simply express the Archimedean spiral as the function r = aθ where

a is some constant (it represents the angular velocity of point P in Ostermann and

Wanner’s description). Notice that Archimedes definition of spiral limits the polar

coordinate definition to θ ∈ [0, 2π], since he only considers one revolution (“return

to the position from which it started”), though we’ll see below that he addresses

“the nth turn” in his Proposition XX.

Note. Notice that the Archimedean spiral allows us to trisect an angle, as given in

Figure 4.4 (center). Simply trisect the terminal side (of length r in the figure) of the

given angle (of size 3β) and use the resulting point to determine a circle of radius

r/3. This circle intersects the Archimedean spiral at a point that determines an

angle of size β, thus trisecting the given angle. Archimedes addresses a property of

tangents to a spiral in his Proposition 20. Ostermann and Wanner state Proposition

20 as (see page 81): “That tangent at a point ∆ cuts the line through A orthogonal

to A∆ at the point Z such that AZ = arc ∆K (see Fig. 4.4(c)).”
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Note. Archimedes statement of Proposition 20 as given in Heath’s The Works of

Archimedes is:

“Proposition XX. I. If P be any point on the first turn of the spiral

and OT be drawn perpendicular to OP , OT will meet the tangent at

P to the spiral in some point T ; and if, the circle drawn with centre O

and radius OP meet the initial line in K, then OT is equal to the arc

of this circle between K and P measured in the ‘forward’ direction of

the spiral.

II. Generally, if P be a point on the nth turn, and the notation be as

before, while p represents the circumference of the circle with radius

OP ,

OT = (n− 1)p + arc KP (measured ‘forward’).”

A figure from Heath’s The Works of Archimedes, page 175. Notice that in this

figure, the rotation is taken as clockwise, instead of the traditional

counterclockwise of polar coordinates.
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Note. With the differential notation of Leibniz, Archimedes takes a little increase

of angle ϕ of size dϕ, so that the angle increases form ϕ to ϕ + dϕ. As shown

in Figure 4.4(c), this gives a little right-angled triangle 4∆PE with sides of ap-

proximate size P∆ ≈ r dϕ and PE ≈ dr = a dϕ (because the curve is r = aϕ at

point ∆). For dϕ very small, we have angle PE∆ is approximately the same size

as angle A∆Z. So for dϕ very small, triangle 4∆PE is approximately similar to

triangle 4ZA∆. Hence (AZ)/(A∆) ≈ (r dϕ)/(a dϕ) = r/a = ϕ (since r = aϕ).

Since (A∆) = r, then we now have (AZ)/r ≈ ϕ, or (AZ) ≈ rϕ = arc ∆K. Now

the smaller dϕ is, the better the approximation (AZ) ≈ arc ∆K. “Therefore,” in

modern symbols, limdϕ→0(AZ) = arc ∆K. That is, when ∆Z is tangent to the

spiral at ∆, then AZ = arc ∆K, as claimed. Archimedes, of course, does not take

“little dϕ slices.” Instead, he first assumes AZ > arc∆K and gets a contradiction

by making dϕ sufficiently small. Second he assumes AZ < arc ∆K and again gets

a contradiction by making dϕ sufficiently small. He then concludes equality.

Note. Archimedes addresses the area bounded by a spiral in his Proposition 24:

“Proposition XXIV. The area bounded by the first turn of the spiral

and the initial line is equal to one-third of the ‘first circle’ [= 1
3π(2πa)2,

where the spiral is r = aθ].”

We give a proof of this in the supplement using Riemann integration and polar

coordinates. Archimedes gives an argument very similar to this. Similar to his

proof of Proposition 20, he first assumes the area bounded by the spiral is less

than one-third of the ‘first circle’ and gets a contradiction by choosing a Riemann

sum of inscribed sectors that are sufficiently small (see Figure 4.5 below). Second,
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he assumes the area bounded by the spiral is greater than one-third of the ‘first

circle’ and gets a contradiction by choosing a Riemann sum of circumscribed sectors

that are sufficiently small. He then concludes that equality holds. In fact, this is

Archimedes’ approach to many of his area and volume arguments; the approach

is called “the method of exhaustion.” He also uses this idea in approximating π.

This is explained in the supplement to this section, Archimedes: 2,000 Year Ahead

of His Time (in PowerPoint, with a transcript available in PDF).
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