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Chapter 5. Trigonometry

Section 5.1. Ptolemy and the Chord Function.

Note. Claudius Ptolemy (circa 85 ce–165 ce) was born, worked, and died in

Egypt. He is best known for his work the Almagest, whose geocentric model of the

universe dominated the area of astronomy for around 1400 years (until the accep-

tance of Copernicus heliocentric model, following the work of Kepler and Galileo).

The Almagest includes observations Ptolemy made from Alexandria Egypt between

the years 127 and 141 ce. We’ll discuss some of the content of the Almagest below.

Ptolemy also published Handy Tables which were improved, more accurate versions

of many of the tables appearing in the Almegest. He wrote a “popular level” de-

scription of his ideas on planetary motion, Planetary Hypothesis. This consisted to

two books, with simplification of the mathematical arguments and replacements of

them in terms of mechanical models. In Analemma he described the construction

of sundials based on projections onto the celestial sphere (that is, the night sky

viewed as a sphere around the Earth on which the stars, sun, moon, and planets

move). He considered mappings of the celestial sphere onto a plane in the form of

stereographic projection in his Planisphaerium (for an explanation of stereographic

projection in the setting of the complex plane, see my online notes for Complex

Analysis 1 [MATH 5510] on Section I.6. The Extended Plane and Its Spherical

Representation). His Geography consisted of eight books and attempted to give

maps for the known world in terms of longitude and latitude; using the available

data of the time, this work contained a number of inaccuracies. Ptolemy also wrote

Optics, consisting of five books. It involved studies of color, reflection, refraction,

https://faculty.etsu.edu/gardnerr/5510/notes/I-6.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/I-6.pdf
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and mirrors. This also contained a mathematical development of the subject as

well as much physical data. This historical information (the photo next image, and

much of the description of the Almagest given below) is from the MacTutor History

of Mathematics Archive biography of Ptolemy (accessed 5/15/2023).

Note. The Almagest is in print in English as Ptolemy’s Almagest, Revised Edited

Edition, translated and annotated by G. J. Toomer, Princeton University Press

(1998). According to the Foreward by Owen Gingerich, the Almagest we writ-

ten in Greek in Egypt around 150 ce under the Greek title Mathematike Syntaxis

(“Mathematical Treatise”). Ptolemy’s work was based on an Earth centered (i.e.,

geocentric) model of the universe (previously advocated by Plato and Aristotle).

His model would be the dominant one until Nicolaus Copernicus (February 19,

1473–May 24, 1543) published his heliocentric model in On the Revolutions of

he Heavenly Spheres (De revolutionibus orbium coelestium) in Nuremberg in 1543

(though Aristarchus of Samos [circa 310 bce–circa 230 bce] advocated a heliocen-

tric model).

https://mathshistory.st-andrews.ac.uk/Biographies/Ptolemy/
https://mathshistory.st-andrews.ac.uk/Biographies/Ptolemy/
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Note. The Almagest was translated into Arabic in the eighth or ninth centuries,

with the title Al-majisti from which its current title comes. Knowledge of the work

was lost to western Europe by the early middle ages (read this as around the fifth

century with the collapse of Roman civilization), though it continued to circulate

in the (eastern) Byzantine empire. Johann Regiomontaus (June 6, 1436–July 6,

1476) translated it into Latin and this version was the second scientific book to be

printed (after Euclid’s Elements). It was printed in 1496 according to Ostermann

and Wanner, although Toomer in his translation reports that it was first printed

in 1515 (in Venice).
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The frontispiece of the first printed version of the Almagest depicting Ptolemy an

the left and Regiomonataus on the right; from the Wikimedia.org webpage

(accessed 5/15/2023)

Note. The thirteen books of the Almagest describe how to calculate the positions of

the five known planets at any time, past, present, or future. This was revolutionary

in itself since it relied on mathematical computations to describe the workings

of the physical world (regardless of the model used). This evolves into Johannes

Kepler’s (December 27, 1571–November 15, 1630) precise mathematical description

of planetary motion in a heliocentric model, the explorations of physical principles

of motion by Galileo Galilei (February 15, 1564–January 8, 1642), and ultimately

the development of classical mechanics by Isaac Newton (January 4, 1643–March

31, 1727).

https://commons.wikimedia.org/wiki/File:Ptolemy_Muller.jpg
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Note. Using geometry, Ptolemy set up models to give the positions of the sun,

moon, and planets using motion along circles and epicyclces (smaller circles with

their centers on the larger circles; the epicycles were used to explain the apparent

retrograde motion of the planets). For more on epicycles, see my online notes

for Astronomy (PS 215 at Auburn University) on Chapter 3. Early Astronomy);

see Figure 3.12. To perform the necessary mathematical manipulations, Ptolemy

introduces the chord function of an angle, cord (α). It measures the side of an

isosceles triangle with equal sides of length 60 and the angle included by these

equal sides of size α, as follows.

Based on the right triangle above, cord(α) = 2(60) sin(α/2) = 120 sin(α/2). Ptolemy

gives values of cord(α) of all α between 1/2◦ and 180◦ taken at 1/2◦ increments.

In Figure 5.2, the angles are measured in degrees and minutes. The value of

the chord function (“cordes”) is recorded in the Babylonian sexagesimal system

where the first decimal part, or partes minutae primae (first small parts), and

the second decimal part, or partes minutae secondae (second small parts), are

given in Figure 5.2. By the way, Ostermann and Wanner state (see page 113)

that these decimal parts are where we get our words for minutes and seconds.

https://faculty.etsu.edu/gardnerr/Astronomy/Snow3-notes/Snow3-I-3.pdf
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As an example, consider α = 6◦ (the last visible entry in Figure 5.2). We have

cord(6◦) = 120 sin(3◦) ≈ 6.280315. Ptolemy reports the result of 6 16 49. Since

this is a sexigesimal representation, we interpret it as 6+16/60+49/602 ≈ 6.280278.

Notice that |6.280315 − 6.280278| × 3600 = 0.1332 < 1 so that Ptolemy’s value is

accurate to the nearest 1/3600 (or, if you like, to the nearest second).

Note. For the remainder of this section we modify the chord function to relate

to an isosceles triangle the equal sides of length 1. With this revised definition

we have cord(α) = 2 sin(α/2). Since sin(30◦) = 1/2, then cord(60◦) = 1; notice

that α = 60◦ implies that we are dealing with a hexagon inscribed in a circle of ra-

dius 1 (see the hexagon entry Table 1.1 of Section 1.7. The Pythagorean Theorem).

We also see from the last entry of Table 1.1 (the entry for the decagon) that if length

of each side of a decagon is 1 then the radius of the circumcircle is Φ (the golden

ratio). If we scale this by 1/Φ, then the circumcircle has radius 1 and the side of

https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-1-7.pdf
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the decagon has length 1/Φ. Therefore, cord(360◦/10) = cord(36◦) = 1/Φ. Just

as Archimedes bisected angles to estimate the value of π (see my PowerPoint Sup-

plement. Archimedes: 2,000 Year Ahead of His Time), Ptolemy can find cord(α/2)

based on cord(α). He also finds the chord function of a sum or difference using the

identity:

2 cord(α+β) = cord(α) cord(180◦−β)+cord(180◦) cord(β) (5.1)

Notice that, for example, Ptolemy can find cord(3◦) by (1) bisecting 60◦ to get

cord(30◦), (2) using (5.1) for a difference to get cord(36◦ − 30◦) = cord(6◦), then

(3) bisecting 6◦ to get cord(3◦). Because of the failure to constructively trisect an

angle, he cannot directly find cord(1◦) and must instead use interpolation to get

the level of precision given in Figure 5.2. Ptolemy’s proof of 5.1 is based on the

following lemma.

Lemma 5.1 (Ptolemy’s Theorem). Let a quadrilateral with sides a, b, c, d be

inscribed in a circle. Then the diagonals δ1 and δ2 satisfy ac + bd = δ1δ2.

https://faculty.etsu.edu/gardnerr/talks/Archimedes.pptx
https://faculty.etsu.edu/gardnerr/talks/Archimedes.pptx
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Note. Notice that Ptolemy’s chord function can be used to estimate π. We can

reproduce Archimedes inscribed 96-gon technique for estimating π (using a cir-

cle with radius 1) by taking α = (360/96)◦ = 3.75◦. We have cord(3.75◦) =

2 sin((3.75/2)◦) = 2 sin(1.875◦) ≈ 0.065438 and, since the circumference of the

circumcircle is 2π, 2π ≈ 96 cord(3.75◦) ≈ 96(0.065438) = 6.282048 so that π ≈

3.141024. Recall that Archimedes had the lower estimate of 3 10
71 ≈ 3.140845 (notice

that the chord function gives a better lower bound, but we have used an approx-

imation to sin(1.875◦) that is accurate to 6 decimal places, whereas Archimedes

used several rational number bounds on trigonometric functions). Ptolemy used

a circumscribed 360-gon to estimate π (this requires an estimate of
√

3, as was

required by Archimedes when he was dealing with a circumscribed 96-gon). This

gave Ptolemy an upper bound on π of 3 17
120 ≈ 3.141667. Using an inscribed 360-

gon and an estimate of the chord function to six decimal places, a lower bound

on π is (360/2) cord(1◦) = 360 sin((1/2)◦) ≈ 3.141553. The first two books of the

Almagest cover the cord function and measurements on the celestial sphere.

Note. We make a final comment about estimated π with the polygons. If we

inscribe a regular n-gon in a circle of radius 1, then the central angle associated

with a side of the n-gon is of size α = 2π/n in radians (here we treat radians

simply as an arbitrary measure of angles, related to degrees by the conversion

factor 180◦ = π radian), then the perimeter of the n-gon is

n cord(α) = n cord

(
2π

n

)
= n

(
2 sin

(α

2

))
= n

(
2 sin

(π

n

))
= 2n sin

(π

n

)
.
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Now by L’Hôpital’s Rule,

lim
n→∞

n cord(α) = lim
n→∞

2n sin
(π

n

)
= 2 lim

n→∞

sin(π/n)

1/n

0/0
= 2 lim

n→∞

cos(π/n)[−π/n2]

−1/n2 = 2π lim
n→∞

cos
(π

n

)
= 2π cos

(
lim
n→∞

π

n

)
= 2π cos(0) = 2π,

where we can take the limit since the cosine function because it is continuous.

Of course this is artificial as a historical observation since since Ptolemy (and

Archimedes) predate the formal concept of a limit (and L’Hôpital’s Rule) by several

hundred years. Also, we have chosen to represent angles in radians as an arbitrary

unit, but it is necessary to measure angles in radian so that we can differentiate

and apply L’Hôpital’s Rule (the fact that the derivate of sin x is cos x only holds

when x is measured in radians). None-the-less, this illustrates that the concept

of approximation of the circle with regular n-gons (where n is “large”) in finding

approximations of π is a valid one.

Note. Book 3 of the Almagest concerns the sun. Based on observations of solstices

and equinoxes (the dates on the calendar marking the changes of season), Ptolemy

proposed a model for the sun involving uniform circular motion around the Earth,

but with the Earth slightly off center from the orbit. Books 4 and 5 cover the

motion of the moon. Building on work of Hipparchus (190 bce–120 bce), Ptolemy

considers three different periods of lunar motion and he improves on Hipparchus’

model of this motion. In Book 6 Ptolemy presents a theory of lunar and solar

eclipses. Books 7 and 8 cover the “fixed” stars. Ptolemy maintains that the stars

are fixed, based on the locations he observes versus those recorded by Hipparchus

about 200 years earlier. Books 7 and 8 also catalogue over one thousand stars.
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Books 9 through 13 cover planetary motion. Before the Almagest there was no

theoretical model explaining the complicated movements of the planets, so this

is Ptolemy’s main contribution and this is what he is primarily remembered for.

His predictions matched the observable data and made accurate predictions. In

Ptolemy’s model, the path of a planet consists of uniform circular motion on an

epicycle whose center moved on a primary circle. The primary circle has a center

offset from the Earth and the epicycle moves around the primary circle uniformly

NOT with respect to the center of the primary circle, but with respect to a point

called the equant which is symmetrically placed on the opposite side of the center

from the Earth. With this involved model, Ptolemy was able to make accurate

predictions of the locations of the planets in the future.

Note. We conclude this section with an application of Ptolemy’s model. A plane-

tarium projector reproduces the night sky as viewed from the Earth. So an older

project (one from before everything was generated digitally) had to mechanically

reproduce the movement of the sun, moon, and planets relative to the fixed starts.

The stars and planets (and the sun and moon) are projected onto the dome of the

planetarium. The fixed stars themselves are produced by two hemispheres with

holes drilled in them and containing a light source. The planets are projected onto

the dome by individual light sources which are bounced off of a little mirror which

can be rotated to simulate motion of the planet over time. If the little mirrors sim-

ply rotated on a gear, then the planet would just move around the dome without

reproducing the retrograde motion. So in order to produce the retrograde motion,

the little mirrors are mounted on an arm whose motion is affected be a secondary
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gear which reproduces the retrograde motion and acts as Ptolemy’s epicycles. The

ETSU Planetarium began operation in fall of 1962. It had a Spitz Model A3P

Projector (state of the art technology, for the time). The projector produced im-

ages of 6,000 stars on the 24 foot dome. The planetarium is still in use (though

the old Spitz projector was replaces in the 2000s with a digital projector) and is

located in Room 207 of Hutcheson Hall. Free public shows are still given monthly

and details are on the ETSU Planetarium webpage (accessed 5/16/2023). The

following images are from the Planetarium Projector Museum, Spitz Space Transit

Planetarium Projector webpage. They show the structure of a Spitz projector and

give a close-up view of the gears that generate the images of the planets on the

planetarium dome. The secondary gear and the arm mounted to it that produces

the retrograde motion can be seen on the right. All this is based on Ptolemy’s

model because it is so good at producing the observed night sky!

Images from the Planetarium Projector Museum, Spitz Space Transit

Planetarium Projector webpage (accessed 5/16/2023)
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