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Section 5.10. The Great Discoveries of

Kepler and Newton

Note. In this section, we step aside from mathematics (arguably) and consider a

solution to a problem from astronomy that was the topic of quantitative study for

at least 2,000 years. We describe the motion of the planets. This is accomplished

empirically with Kepler’s Three Laws of Planetary Motion. Kepler, however, does

not give an explanation of why the planets move as he describes, but simply gives

the description of the movement. We derive Newton’s inverse square law of gravity

assuming Kepler’s first and second laws (in Theorem 5.9; the argument is based

on geometry as Newton originally presented it, and does not rely on calculus).

Conversely, we show that Newton’s inverse square law of gravity implies Kepler’s

First Law (for this, we give a geometric argument of Richard Feynman and discuss

the history of this problem). Hence it is Newton’s work which gives the causal

explanation of the movements of the planets about the sun. The method by which

Newton’s gravitational “force” is transmitted remains mysterious until Einstein

explains it in terms of curvature of spacetime in his General Theory of Relativity.

Note. Ostermann and Wanner claim that the three great works making the emer-

gence of “modern science” (well, modern physical science, maybe) are:

1. Johannes Kepler (December 27, 1571–November 15, 1630), Astronomia Nova

(1609); the full title in English is New Astronomy, Based upon Causes, or

Celestial Physics, Treated by Means of Commentaries on the Motions of the

Star Mars, from the Observations of Tycho Brahe, Gent. This includes Ke-

pler’s first two laws of planetary motion (his third law appears in his 1619
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Harmonies of the World). Based on the precise (but naked eye) observations

of Tycho Brahe (December 14, 1546–October 24, 1601), Kepler presented an

argument that Mars has an elliptical orbit. The evidence of the elliptical shape

of the orbits of the other planets was presented later.

2. Galileo Galilei (February 15, 1564–January 8, 1642) Discorsi e Dimostrazioni

Matematiche (1638); the full title in English is Discourses and Mathematical

Demonstrations Relating to Two New Sciences. This is Galileo’s final book

and is written in the style of his Dialogue Concerning the Two Chief World

Systems which caused him so much trouble with the church and the Roman

inquisition. The book centers around conversations between three characters,

Simplicio, Sagredo, and Salviati. This is the work where Galileo describes

the motion of objects in free fall. He used inclined planes to slow the fall of

objects and he deduced the quantitative behavior of an accelerating object (an

impressive accomplishment, given that he did not have access to very accurate

time pieces). From this work, it follows that objects in motion near the surface

of the Earth follow parabolic trajectories.

3. Isaac Newton (December 25, 1642/January 4, 1643–March 20, 1727/Math

31, 1727) PhilosophiæNaturalis Principia Mathematica (1687); the full title in

English is Mathematical Principles of Natural Philosophy. In this monumen-

tal work, Newton presents his Universal Law of Gravitation and his Laws of

Motion. He used these results to derive Kepler’s Laws of Planetary Motion.

Surprisingly, he gives geometric arguments for his results instead of using the

calculus techniques which are used to demonstrate these ideas in a physics

class today (and he is the first to develop these techniques!). An 1846 copy of
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Newton’s Principia translated by Andrew Motte is available on the Red Light

Robber website (accessed 10/5/2021).

This historical information is based on the Wikipedia pages for Kepler, Galileo and

Newton, where reliable references for these claims are given (accessed 9/24/2021).

Note. Each of these books is still in print. The following images of Kepler, Galileo,

and Newton are from the MacTutor History of Mathematics Archive webpage. The

images of the books are from Amazon.com.

Johannes Kepler Galileo Galilei Issac Newton

Astronomia Nova Discorsi Principia Mathematica

http://redlightrobber.com/red/links_pdf/Isaac-Newton-Principia-English-1846.pdf
http://redlightrobber.com/red/links_pdf/Isaac-Newton-Principia-English-1846.pdf
https://en.wikipedia.org/wiki/Johannes_Kepler
https://en.wikipedia.org/wiki/Galileo_Galilei
https://en.wikipedia.org/wiki/Isaac_Newton
https://mathshistory.st-andrews.ac.uk/
https://www.amazon.com/
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Note. Two other people are relevant to this story. Aristarchus of Samos (circa

310 bce–circa 230 bce) was the first person in history known to have proposed

that the Earth goes around the sun (“heliocentrism”) in a circular orbit with the

Sun at the center. Aristarchus also proposed that the stars were themselves suns,

just very far away. The original work in which he presented these ideas is lost,

but it is known due to a reference of Archimedes in his Sand Reckoner. Some of

Aristarchus’ work survives in the form of On the Sizes and Distances of the Sun

and Moon, which is still in print and appears in Thomas Heath’s Aristarchus of

Samos: The Ancient Copernicus. Nicolaus Copernicus (February 19, 1473–May

24, 1543), a Polish astronomer, published De Revolutionibus Orbium Coelestium

(In English, On the Revolutions of the Celestial Spheres) in 1543. He completed the

work around 1532, in which he proposed heliocentrism with the planets orbiting

the sun in circular orbits. It seems that Copernicus was aware of Aristarchus’

work, and that of others, based on early versions of the De Revolutionibus, but he

dropped these references in the 1543 version. Out of fear of of backlash from the

church, he delayed publication until shortly before his death. The impact was so

large, that the would “revolution” in the tile (previously just having the meaning in

the sense of “the Earth revolves around the sun”) took on the meaning of a major

shift in thought (as in “revolutionary”). Copernicus book was widely circulated,

but it has the reputation of not being widely read, as indicated by the title of Owen

Gingerich’s 2004 The Book Nobody Read. This historical information is based on

the Wikipedia pages for Aristarchus and Copernicus, where reliable references for

these claims are given (accessed 9/24/2021). The following images of Airstarchus

and Copernicus are from the MacTutor History of Mathematics Archive webpage.

https://en.wikipedia.org/wiki/Aristarchus_of_Samos
https://en.wikipedia.org/wiki/Nicolaus_Copernicus
https://mathshistory.st-andrews.ac.uk/
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The images of the books are from Amazon.com.

Aristarchus of Samos Nicolaus Copernicus

Aristarchus: The Ancient Copernicus The Book Nobody Read

Note. At the turn of the 17th century (i.e., around the year 1600), it was thought

that the planets (well, Mercury through Saturn, since Uranus and Neptune were

not known at the time) revolved around the Sun on “eccentric circles”; that is,

on circles with their center near the Sun. This met the observational data (which

was largely naked-eye data at the time), with the exception of Mars (this is due

to the fact that the eccentricity of Mars’ orbit is the largest of the eight planets,

https://www.amazon.com/
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with the exception of Mercury which is particularly difficult to observe, given its

nearness to the Sun). By careful study of Tycho Brahe’s data on Mars, Kepler was

able to determine that Mars orbits the Sun in an ellipse with the Sun at one focus.

Kepler’s Three Laws of Planetary Motion are:

Kepler’s 1st Law. Planets move on elliptic orbits with the Sun at one of the foci.

Kepler’s 2nd Law. The planets orbiting the Sun sweep out equal areas in equal

time.

Kepler’s 3rd Law. The squares of the periods of revolution are proportional to

the cubes of the semi-major axes.

A nice climax of the Calculus class sequence is that Kepler’s laws can be proved

using the techniques developed in calculus and by assuming Newton’s Universal

Law of Gravitation. For these derivations, see my online Calculus 3 (MATH 2110)

on 13.6. Velocity and Acceleration in Polar Coordinates. These notes also include

some history. For additional historical comments, see my online notes for freshman

Astronomy (these notes are based an a class at Auburn University, PS 215, which

I taught in summer 1990) on Chapter 4. The Renaissance and Chapter 5. Isaac

Newton and the Laws of Motion

Note. Before we discuss Kepler’s successes, we mention one of his other ideas. . . There

were only six known planets in Kepler’s time. It was also known that there were

only regular “platonic” solids: the tetrahedron, cube, octahedron, dodecahedron,

and icosahedron (see 2.5. Book XI. Spatial Geometry and Solids, especially Fig-

ure 2.27). Kepler thought that there was a connection between the number of the

https://faculty.etsu.edu/gardnerr/2110/notes-12e/c13s6.pdf
https://faculty.etsu.edu/gardnerr/Astronomy/Snow3-notes/Snow3-I-4.pdf
https://faculty.etsu.edu/gardnerr/Astronomy/Snow3-notes/Snow3-II-5.pdf
https://faculty.etsu.edu/gardnerr/Astronomy/Snow3-notes/Snow3-II-5.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-2-5.pdf


Section 5.10. The Great Discoveries of Kepler and Newton 7

number of planets and number of platonic solids. Carl Sagan describes Kepler’s

original idea in his PBS series Cosmos, Chapter 3. The Harmony of the Universe

as

“In the course of a lecture on astrology, Kepler inscribed within the

circle of the Zodiac a triangle with three equal sides. He then noticed,

quite by accident, that a smaller circle inscribed within the triangle

bore the same relationship to the outer circle as did the orbit of Jupiter

to the orbit of Saturn. Could a similar geometry relate the orbits of

the other planets?” (33:09–33:36)

By nesting (or inscribing) the five platonic solids in one another, the distances of

the planets from the Sun would then be determined. The solids were inscribed

in one another (from the inside out) as octahedron, isocsahedraon, dodecahedron,

tetrahedron, and cube; the outer three solids can be seen in Figure 5.19 (see The

Oracles’s webpage on “Mysterium Cosmographicum by Johannes Kepler” for a

clearer view; accessed 9/25/2021). In ancient Greek astronomy, the planets were

https://www.youtube.com/watch?v=SC4CXcNy0pE&list=PL6rj1b7vga5WdZBLyql4pprGRUmXUceBn&index=3
https://www.theoracleslibrary.com/2015/01/08/mysterium-cosmographicum-johannes-kepler/
https://www.theoracleslibrary.com/2015/01/08/mysterium-cosmographicum-johannes-kepler/
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thought to move on crystalline spheres. In this same spirit, Kepler considers spheres

that are inscribed in or circumscribed around the five platonic solids (this is how

six orbits are determined by five solids).

Quoting form Carl Sagan’s Cosmos, NY: Random House (1980):

“In these perfect forms, he believed he had recognized the invisible

supporting structures for the sphere of the six planets. He called his

revelation The Cosmic Mystery. The connection between the solids

of Pythagoras and the disposition of the planets could admit but one

explanation: the Hand of God, Geometer.” (See page 57.)

Kepler published his ideas in 1596 in Mysterium Cosmographicum (in English,

The Secret of the Universe). But Kepler’s model did not agree with the observed

data. In addition, the discovery of additional planets removes the special numerical

nature of Kepler’s model. One could argue that Kepler’s approach was almost

numerological in nature. In his defense, mathematical models of the positions of

the planets (even in the case of geocentric models) had been somewhat successful.

He was just looking for the wrong kind of mathematical model; remember, Kepler
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predates anything we would recognize as physical laws expressed in mathematical

terms (this would start with Galileo, as mentioned above).

Mysterium Cosmographicum, Eastoan (1981)

Note. We now discuss how, based on data for Mars, Kepler discovered his first

law. In Chapter 56 of Astronomia Nova, Kepler presents the image in Figure 5.28

(left). A diagram of Kepler’s figure is given in Figure 5.28 (right). The solid circle

is the best eccentric circle for the orbit of Mars. For scale, we take the radius of this

circle to be 1 unit, let the center be O, and suppose that the circle rotates about

point S. At one point in time Mars is at its greatest distance from the vertical axis

SOC. If B is the point on the circular orbit at this point in time, then the distance

from Mars to the vertical axis is 1. But based on the data of Mars as measured

by Tycho Brahe, the actual position of Mars at this time was at point B′ which is

at a distance of 1/1.00429 ≈ 0.99573. Kepler recognizes this value as cos 5◦18′ (or,

equivalently, recognizes 1.00429 as sec 5◦18′). The text book quotes him as saying:
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“When my triumph over Mars appeared to be futile, I fell by chance on

the observation that the secant angle 5◦18′ is 1.00429, which was the

error of the measure of the maximal point. I awoke as if from sleep,

& a new light broke on me.” (Astronomia Nova, 1609, Cap. LVI, page

267)

So he replaces the point B with point B′ by translating point B along segment BO

to point B′ in such a way that the distance from B′ to S is 1. That is, he creates

a new right triangle B′OS with the hypotenuse B′S of length equal to the length

of the leg BO (and the other leg in both triangles is the segment OS). He makes

similar changes in the other points on the solid circle (explained below), creating

the dashed path in Figure 5.28 (left).
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Similarly, for any point P on the solid circle, we form a right triangle with hy-

potenuse PS and one of the legs as a segment containing points P and O (say the

endpoint of this leg is at point R and point R is the vertex of the right angle; see

Figure 5.28 right). We again slide point P along the radial segment PO until the

length of segment P ′S equals the length of leg PR. To quantify this, we need to

find the length of segment OR. We introduce the angle u as shown in Figure 5.28

(right), form which we can deduce that the length of segment OR is e cos u (see

the figure below). So the length of segment P ′S equals the length of segment PR

equals 1 + e cos u:

P ′S = PR = 1 + e cos u.

The resulting distances very closely match those observed by Brahe. This is the

form of an ellipse where u is the eccentric anomaly; see Theorem 5.9.A in Section

5.9. Trigonometric Formulas for Conics. However, to use Theorem 5.9.A we must

rotate Figure 5.28 (right) 90◦ counterclockwise to put point S on the positive x-axis

so that it is at the focus F , as in Figure 5.26 (left). Then the parameter u of Figure

5.28 (right) is 180◦ greater than the value of u as given in Figure 5.26 (left) and in

Theorem 5.9.A. So with a = 1 and in terms of u as used in this section, we have

that r = a − ae cos u implies r = (1) − (1)e cos(u + 180◦) = 1 + e cos u, as needed.

https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-5-9.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-5-9.pdf
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Note. Newton’s first two laws of motion, as stated in the text book, are the

following:

Lex 1. Without force a body remains in uniform motion on a straight line.

Lex 2. The change of motion is proportional to the motive force impressed.

A somewhat more familiar statement of these are the following, from NASA’s Glenn

Research Center’s webpage:

Newton’s First Law. An object at rest remains at rest, and an object in motion

remains in motion at constant speed and in a straight line unless acted on by

an unbalanced force.

Newton’s Second Law. The acceleration of an object depends on the mass of

the object and the amount of force applied.

Newton’s Second Law is quantified in the concise equation F = ma. We now give

a geometric argument that Kepler’s Second Law holds. We present the proof given

by Newton in Principia Mathematica as Theorem 1. But we also need a result of

Newton’s which, in essence, allows him to take a limit. This result is his Lemma

III in Book One of Principia. We now state it, along with his Lemma II. In Lemma

II Newton introduces an idea very similar to Riemann’s idea of Riemann sums as

encountered in Calculus 1 when dealing with a regular partition (see my online

Calculus 1 [MATH 1910] notes on Section 5.2. Sigma Notation and Limits of Finite

Sums).

https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/newtons-laws-of-motion/
https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/newtons-laws-of-motion/
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s2-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s2-14E.pdf
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Lemma II. (From Newton’s Principia Mathematica.)

If in any figure AacE, terminated by the right lines Aa, AE, and the curve acE,

there be inscribed any number of parallelograms Ab, Bc, Cd, &c., and the sides,

Bb, Cc, Dd, &c., comprehended under equal bases AB, BC, CD, &c, and the sides

Bb, Cc, Dd, &c., parallel to one side Aa of the figure; and the parallelograms aKbl,

bLcm, cMdn, &c., are completed: then if the breadth of those parallelograms be

supposed to be diminished, and their number to be augmented in infinitum, I say,

that the ultimate ratios which the inscribed figure AKbLcMdD, the circumscribed

figure AalbmcndoE, and curvilinear figure AabcdE, will have to one another, are

ratios of equality.

The Figure for Newton’s Lemmas II and III from

Motte’s 1846 translation of Principia.

Note. Lemma II has the requirement that the parallelograms have “equal bases”

implies that we are dealing with a regular partition of the base AE. In Lemma III,

Newton deals with a similar situation, but without the condition of equal bases.

http://redlightrobber.com/red/links_pdf/Isaac-Newton-Principia-English-1846.pdf
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Lemma III. (From Newton’s Principia Mathematica.)

The same ultimate ratios are also ratios of equality, when the breadths AR, BC,

DC, &c., of the parallelograms are unequal, and are all diminished in infinitum.

Note. Newton is taking some mathematical liberties here. He is depending on

the drawing given above and making an assumption of convergence and continu-

ity. The rigorous development of the ideas was given in the 1800s by Augustin

Cauchy and Richard Dedekind. Euclid himself makes similar “continuity consider-

ation” assumptions in his Elements; see my online notes for Introduction to Modern

Geometry (MATH 4157/5157) on Section 2.2. A Brief Critique of Euclid.

Theorem 5.8. (Theorem 1 of Newton’s Principia Mathematica.)

“The areas, which revolving bodies describe by radii drawn to an immoveable centre

of force, do lie in some immoveable planes, and are proportional to the times in

which they are described.” (This is just Kepler’s Second Law.)

Note. In Calculus 3 (MATH 2110) a proof of Theorem 5.8 is given using vector

values functions and cross products (see “Lemma” and Kepler’s Second Law of

Planetary Motion in my online notes on Section 13.6. Velocity and Acceleration in

Polar Coordinates).

Note. In a physics or calculus class (see my online notes for Calculus 3 [MATH

2110] on Section 13.6. Velocity and Acceleration in Polar Coordinates, for example)

https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-2-2.pdf
https://faculty.etsu.edu/gardnerr/2110/notes-12e/c13s6.pdf
https://faculty.etsu.edu/gardnerr/2110/notes-12e/c13s6.pdf
https://faculty.etsu.edu/gardnerr/2110/notes-12e/c13s6.pdf
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you will encounter Newton’s Law of Gravitation:

If r is the position vector of an object of mass m and a second mass of

size M is at the origin of the coordinate system, then a (gravitational)

force is exerted on mass m of

F = −GmM

|r|2
r

|r|
.

The constant G is called the universal gravitational constant and (in

terms of kilograms, Newtons, and meters) is 6.6726−11 Nm2kg−2.

We will give a proof of this based on Kepler’s First and Second Laws. This proof

appears in Newton’s Principia Mathematica as Proposition 11. The statement

given by Ostermann and Wanner is as follows; a proof will follow below.

Theorem 5.9. (Proposition 11 of Newton’s Principia Mathematica.)

A body P , orbiting according to Kepler 1 and 2 [i.e., Kepler’s 1st and 2nd Laws],

moves under the effect of a centripetal force, directed to the centre S, satisfying

the law

f =
Constant

r2 , where r is the distance SP .

Note. We prove Theorem 5.9 below, but first we need an observation and a

lemma. Figure 5.30 left (given below) reproduces an image from a 1684 manuscript

of Newton’s (“On the Motion of Bodies in an Orbit,” in Newton’s Mathematical

Papers, volume VI, pages 30–91). The figure represents the path of a body attracted

to “centre of force situated far away in the direction AC.” The assumption that

the attracting body is far away means that we assume the force it exerts to be
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always in the same direction. If the force were absent then the body would have

a velocity tangent to the curved path in the direction AB (the magnitude of this

initial velocity is not meant to be reflected by the length of AB). However, the

force will cause the moving body to follow a curved orbit along the path AD over

time interval ∆t. If the body had no initial velocity at point A then it would

move to point C over time interval ∆t. Now AC and BD are parallel by the “far

away” assumption/approximation. Since the force is assumed to have a constant

magnitude and direction, then distance the object moves in the direction AC while

traveling along curved path AD will equal the distance AC. So if we move away

from point D in the direction away from the attracting body and introduce point

B as shown, then we have AC = BD. Therefore ACBD is a parallelogram. We

know by Newton’s Second Law (“Lex 2”) that the force if proportional to distance

AC. Since AC = BD then then the force is proportional to distance BD:

The acting force is proportional to the distance BD between the point

on the tangent and the point on the orbit. (5.53)
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Newton’s Lemma. Let APQ be an ellipse with focus S and suppose P to be the

position of the planet moving towards Q, while the point R moves on the tangent

with S, Q, P collinear. Let T be the orthogonal projection of Q onto PS (see Figure

5.30, right). Then if the distance PQ tends to zero, we have RQ ≈ (Constant)·QT 2,

where the constant is independent of the position of P on the ellipse.

Note. We are now ready to prove Theorem 5.9 of Newton.

Note. We now take an in-depth look at the history of the converse. The informa-

tion in this Note comes from Jason Socrates Bardi’s The Calculus Wars: Newton,

Lebniz, and The reatest Mathematical Clash of All Time (NY: Thunder’s Mouth

Press, 2006); see pages 118–121. Robert Hooke (July 18, 1635–March 3, 1703) took

an interest in the gravitational nature of planetary motion and he wrote to Newton

about this in 1679 and 1680. In 1684 Edmond Halley (November 8/October 28,

1656–January 25, 1742; famous for his prediction of the return in 1758 of the comet

now named for him) met with Hooke and Christopher Wren (October 30/October

20, 1632–March 8, 1723). Halley was interested in the path of “his” comet, which

had recently made an appearance in the inner solar system in 1682. Halley asked

Hooke and Wren about the physical law that would determine the path, and Hooke

correctly answered that the path would be determined by an inverse square law of

attraction. Wren challenged Hooke to give a mathematical proof of his claim, but

Hooke declined the challenge. Wren told Halley about Newton. Halley traveled to

Cambridge and Trinity College and asked the same question of Newton. Newton

answered immediately that orbiting objects are under an inverse law of attraction

and the paths they follow are ellipses. Halley was pleased with the answer, since it
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matched what Hooke had claimed. Newton stated that he had calculated it years

before but not have the calculation at hand. Halley returned to London and New-

ton later sent Halley two proofs, along with a copy of “On the Motion of Bodies in

an Orbit” (which is mentioned above in connection with Figure 5.30). Halley was

impressed and encouraged Newton to write more. Quoting from Bardi’s book:

“While some may think that Halley’s greatest contribution was predict-

ing the return of the comet he ultimately gave his name to, one could

argue that in fact his greatest accomplishment was to convince New-

ton to publish one of the greatest books ever written—the Principia.

In fact, Halley did not only cajole Newton into writing the Principia,

he also oversaw the production of the book and personally underwrite

the expense of publishing it in 1687, since the Royal Society could not

scrape together the funds to do so.” (See page 121.)

Note. We now discuss some controversy over the validity of the claim that Newton

gives a complete proof that an inverse square law of attraction yields orbits in the

shape of conic sections. We reference Robert Weinstock’s “Newton’s Principia and

Inverse-Square Orbits: The Flaw Reexamined,” Historia Mathematica, 19, 60-70

(1992) (a copy of which is available online on the ScienceDirect website). As we saw

in Theorem 5.9 above (which is Proposition 11 of Newton’s Book One in Principia,

if a body orbits the sun an an ellipse (that is, Kepler’s First Law holds), then

it is under an inverse square law of attraction. Newton considers a body moving

along a hyperbola in his Proposition 12, and a body moving along a parabola in his

Proposition 13 (both of Book One). In these other cases, the body is also under an

inverse square law of attraction. So Newton’s Propositions 11, 12, and 13 cover all

https://www.sciencedirect.com/sdfe/reader/pii/031508609290055G/pdf
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possible conic sections. The converse is thought to be addressed in his Corollary 1

to Proposition 13 (Weinstock uses the University of California Press 1962 version

of Principia translated by Motte and revised by Cajori):

Corollary 1. From the three last Propositions [11, 12, and 13] it

follows, that if any body P goes from the place P with any velocity in

the direction of any right line PR, and at the same time is urged by

the action of a centripetal force that is inversely proportional to the

square of the distance of the places from the centre, the body will move

in one of the conic sections, having the focus in the centre of force; and

conversely.” (See page 61.)

Johann Bernoulli (August 6/July 27, 1667–January 1, 1748) publicly called atten-

tion to problems with Newton’s argument in 1710, and presented a proof of his

own using differential calculus (see page 147 of Ostermann and Wanner). Wein-

stock surveys the objections to Newton’s presentation, and addresses objections to

his own previous work. He comments about his argument that: “. . . the thoughtful

reader should readily conclude that there exists no basis for the claim that Propo-

sitions XI–XIII sum Corollary 1 in Principia Book One serve as (even an outline

of) a proof that an inverse-square force implies a conic-section orbit.” (See his page

65) Of course it is not the validity of the claim that is in question, but instead the

validity of Newton’s argument for it; as we stated above, a proof can be given with

the material of Calculus 3 (MATH 2110). So this leaves us without a geometric

argument (in contrast to an argument based on calculus) for the claim that an

inverse square law of attraction results in orbits that are in the shapes of conic

sections. We address this in Section 5.10 Supplement. Feynman’s Lost Lecture.

https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-5-10-Feynman.pdf
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Note. We conclude this section with some comments related to Newton’s geomet-

ric approach to the problem of planetary motion. N. Guicciardini in “Geometry,

the Calculus and the Use of Limits in Newton’s Principia” (appearing in P. Cerrai,

P. Freguglia, C. Pellegrini (eds) The Application of Mathematics to the Sciences

of Nature, Boston: Springer, 2002) commented in the abstract of his work that:

“Nowadays, a student of ‘Newtonian mechanics’ will find the language used in the

post-Eulerian era somewhat familiar. On the contrary, the language of the Prin-

cipia, burdened by geometrical diagrams, the theory of proportions, almost devoid

of symbolical expressions, leaves our student, even a tenacious one, perplexed.”

Newton writes the Principia between 1684 (when he wrote has manuscript “On

the Motion of Bodies in an Orbit”) and 1687 (when Principia was published). In

the 1660s and 1670s, Newton wrote several manuscripts (which he did not publish

at the time) on calculus. However, the first published papers on calculus were two

papers published by Gottfried Wilhelm Leibniz (July 1/June 21, 1646–November

14, 1716) in 1684 and 1686; this timing led to the argument between Newton and

Leibniz which is described in Bardi’s Calculus Wars. Newton’s first calculus pub-

lication appears as an appendix in his 1704 Opticks. So Newton uses classical

geometric arguments instead of the new (and not well-known) calculus. It is in

Leonhard Euler’s (April 14, 1707–September 18, 1783) Mechanics (in Latin, Me-

chanica sive motus scientia analytice exposita) of 1736 that the power of calculus

is applied to mechanical/dynamic problems and it is from this work that we have

“Newtonian mechanics” as studied in a calculus-based physics class today (thus

Guicciardini’s comment about the “post-Eulerian era”).
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