Section 5.9. Trigonometric Formulation of Conics

Note. In this brief section, we give a polar coordinate equation for an ellipse and find the area swept out be a line joining a focus on the ellipse to a point on the ellipse.

Note. Let point F be a focus on an ellipse and let P be a point on the ellipse. We denote the angle that $\overline{P F}$ makes with the major axis as φ (see Figure 5.26). Angle φ is the true anomaly. Let P_{c} be the (vertical) projection of point P onto a circle of radius equal to the semimajor axis of the ellipse, as shown in Figure 5.26. The central angle u in the circle determined by the semimajor axis of the ellipse and $\overline{O P_{c}}$ is the eccentric anomaly. Let r be the distance $P F$.

Fig. 5.26. A point P on an ellipse, F the focus (Sun), φ the true anomaly, u the eccentric anomaly, a the semi-major axis, and e the eccentricity (left); illustration from Newton's Principia (right)

Theorem 5.9.A. With the parameters introduced above and in Figure 5.26 we have the relations $r=\frac{p}{1+e \cos \varphi}$ and $r=a-e x=a-a e \cos u$ where p is the
vertical distance from a focus to the ellipse and x is the directed distance of P from the minor axis of the ellipse (when the ellipse has its major axis horizontal; see Figure 3.4 in Section 3.2. The Ellipse).

Theorem 5.9.B. The area \mathcal{A} swept out by the line joining the focus F to a point P on the ellipse over an angle φ measured from the semimajor axis (see Figure 5.27 , left) is

$$
\mathcal{A}=\frac{a b}{2}(u-e \sin u) .
$$

Fig. 5.27. Computation of the area \mathcal{A} swept out by the radius vector

