Section 42. Isometries

Note. We now consider mappings which preserve distances.

Definition. An isometry (or "congruent transformation" or "rigid motion") of the Gauss plane (i.e., \mathbb{C}) is a one to one mapping of the plane onto itself such that if P is mapped to P^{\prime} and Q is mapped to Q^{\prime}, the distance $P Q$ equals the distance $P^{\prime} Q^{\prime}$, whatever the points P and Q.

Note. In fact, translations, rotations, and reflections are isometries. For a translation by $b \in \mathbb{C}$, we have the distances $\left|z^{\prime}-w^{\prime}\right|=|(z+b)-(w+b)|=|z-w|$. For rotations about the origin we have the distances

$$
\begin{gathered}
\left|z^{\prime}-w^{\prime}\right|=|(\cos \varphi+i \sin \varphi) z-(\cos \varphi+i \sin \varphi) w|=|(\cos \varphi+i \sin \varphi)(z-w)| \\
=|\cos \varphi+i \sin \varphi||z-w|=|z-w|
\end{gathered}
$$

For reflection about a line through the origin, we have the distances

$$
\begin{gathered}
\left|z^{\prime}-w^{\prime}\right|=|(\cos (2 \alpha)+i \sin (2 \alpha)) \bar{z}-(\cos (2 \alpha)+i \sin (2 \alpha)) \bar{w}| \\
=|(\cos (2 \alpha)+i \sin (2 \alpha))(\bar{z}-\bar{w})|=|\cos (2 \alpha)+i \sin (2 \alpha)||\bar{z}-\bar{w}| \\
=|\bar{z}-\bar{w}|=|\overline{(\bar{z}-\bar{w})}|=|z-w|
\end{gathered}
$$

since $|z|=|\bar{z}|$.

Note. We now introduce axes to the plane. We take the X_{1}-axis to coincide with the real axis and the X_{2}-axis to coincide with the imaginary axis. We can perform a rotation and translation of these axes to get new axes, X_{1}^{\prime} and X_{2}^{\prime}, respectively. A given point in the plane will then have coordinates with respect to both sets of axes.

Note. First we rotate the axes through an angle φ about the origin. We then translate the rotated axes by complex number b.

Consider point z in the $X_{1} X_{2}$-plane (that is, we represent the point in the X_{1}, X_{2} coordinate system as z). The representation of z with respect to the rotated axes is then given by $z(\cos (-\varphi)+i \sin (-\varphi))$. So point b (in the $X_{1} X_{2}$-plane) has become $b(\cos (-\varphi)+i \sin (-\varphi))$. The origin of the $X_{1} X_{2}$-plane is transformed to point b under the rotation and translation. So with O^{\prime} as the origin of the $X_{1}^{\prime} X_{2}^{\prime}$-plane, point z has the representation Z^{\prime} in the $X_{1}^{\prime} X_{2}^{\prime}$ coordinate system as

$$
Z^{\prime}=z(\cos (-\varphi)+i \sin (-\varphi))-b(\cos (-\varphi)+i \sin (-\varphi)) .
$$

If we set $a=\cos (-\varphi)+i \sin (-\varphi)$ and $c=-b(\cos (-\varphi)+i \sin (-\varphi))$ then $|a|=1$ and $Z^{\prime}=a z+c$.

Note 42.A. We now consider a transformation of the form $Z^{\prime}=a z+c$ where $|z|=1$ (so here we do not concern ortselves with coordinates and new axes). This transformation is an isometry: $\left|Z^{\prime}-W^{\prime}\right|=|(a z+c)=(a w+c)|=|a||z-w|=|z-w|$.

Note 42.B. Another transformation of interest (we give a geometric interpretation in terms of axes below) is $Z^{\prime}=a \bar{z}+c$ where $|z|=1$. This is also an isometry:

$$
\left|Z^{\prime}-W^{\prime}\right|=|(a \bar{z}+c) 0(a \bar{w}+c)|=|a||\bar{z}-\bar{w}|=|a||\overline{\bar{z}-\bar{w}}|=|a||z-w|=|z-w| .
$$

Note. The transformation $Z^{\prime}=a z+c$ where $|a|=1$ "preserves the orientation" of the axes. That is, the angle from the positive X_{1}-axis to the positive X_{2}-axis is the same as the angle from the positive X_{1}^{\prime}-axis to the positive X_{2}^{\prime}-axis. Both angles are 90°. The transformation $Z^{\prime}=a \bar{z}+c$ where $|z|=1$ "reverses the orientation" of the axes. Under this transformation, the angle from the positive X_{1}^{\prime}-axis to the positive X_{2}^{\prime}-axis if -90°. We'll see in the next section that these two transformations are fundamental isometries of the (Gauss) plane.

