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Section 44. Algebra and Groups

Note. In this section we give a quick introduction to groups, subgroups, and cosets.

We will see later that mappings of C for groups.

Definition. Let G be a set of elements and ∗ a binary operation on G (that is,

∗ : G × G → G). This is a group if the following hold:

The Associative Law. p ∗ (q ∗ r) = (p ∗ q) ∗ r for all p, q, r ∈ G.

The Identity Law. p∗ i = i∗p = p for all p ∈ G and some some i ∈ G. i is called

the identity of G.

The Inverse Law. For any p ∈ G there exists a p′ ∈ G such that p∗p′ = p′∗p = i.

Such p′ is called an inverse of p, usually denoted p−1.

Note. A detailed account of group theory can be in my online notes for Introduc-

tion to Modern Algebra (MATH 4127/5127) at:

http://faculty.etsu.edu/gardnerr/4127/notes.htm.

Note. It is straightforward to show that there is a unique identity in a group

and that each p ∈ G has a unique inverse (see page 18 of the book). We usually

abbreviate the binary operation as p ∗ q = pq. Notice that we do not assume that

the binary operation is commutative.
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Definition. A group G for which pq = qp for all p, q ∈ G is called an Abelian

group.

Example. The real numbers under addition form an Abelian group. The set of

all 2 × 2 invertible matrices with real entries form a non-Abelian group.

Definition. A subgroup of a given group G is a group whose elements lie in G and

which has the same binary operation as G (Of course we require the subgroup to

be closed under the binary operation.)

Example. We consider now some groups under addition. The rational Q are a

subgroup of R. The integers A are a subgroup of Q. The even integers 2Z =

{. . . ,−4,−2, 0, 2, 4, . . .} is a subgroup of Z. The set of all 2× 2 matrices with real

entries and determinant 1 form a subgroup of all 2 × 2 invertible real matrices.

Theorem 44.2. Conditions for a Subgroup.

A nonempty subset H of a group G is a subgroup of G if and only if for every

a, b ∈ H we have (i) b−1, ab ∈ H, or (ii) ab−1 ∈ H.

Definition. Let G be a group with subgroup H. Let a ∈ G be fixed. The set

{ha | h ∈ H} is a right coset of H (in G), denoted {ha} = Ha. A left coset of H

in G is a set of the form {ah | h ∈ H} = {ah} = aH.
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Example. Let G = Z and H = 3Z = {. . . ,−6,−3, 0, 3, 6, . . .} a subgroup of G.

Notice that G is an additive group so we use additive notation. The cosets of H

are (since G is Abelian then the left and right cosets are the same):

0 + H = {. . . ,−6,−3, 0, 3, 6, . . .}

1 + H = {. . . ,−5,−2, 1, 4, 7, . . .}

2 + H = {. . . ,−4,−1, 2, 5, 8, . . .}.

This example suggests the following.

Theorem 44.4. The Identity of Cosets.

If Ha and Hb have one element in common then they coincide (that is, they are

equal).

Corollary 44.4. Elements a, b ∈ G lie in the same right coset of H if and only if

ab−1 ∈ H.

Note 44.A. We can similarly show that a, b ∈ G are in the same left coset of H if

and only if a−1b ∈ H.

Note 44.B. We see in the proof of Corollary 44.4 that the cosets of a subgroup of

G partition G.
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Example. Consider the additive group G = C and the additive subgroup H =

R. Geometrically, we represent C as the Gauss plane and R as the real axis of

Gauss plane. For any z ∈ C with z = a + ib (where a, b ∈ R) we have the coset

H + z = {h + (a + ib) | h ∈ H = R}. Geometrically, this is the collection of points

in C with imaginary parts equal to b. So the cosets partition the Gauss plane into

uncountably many lines, each parallel to the real axis. Notice that z and z′ are in

the same coset if and only if they have the same imaginary parts; that is, if and

only if z − z′ ∈ R = H, thus illustrating Corollary 44.4 for an additive group.

Theorem 44.5. Right and Left Cosets.

If the number of right cosets with respect to a subgroup H is finite, then there is

an equal number of left cosets, and conversely.

Note. In the proof of Theorem 44.5, we demonstrated a one-to-one correspondence

between the left cosets and the right cosets of a given subgroup. So the cardinality

of the set of left cosets equals the cardinality of the set of right cosets. This does

not depend on any finiteness of the collections of cosets.

Definition. Let G be a group and Ha a subgroup of G with a finite number of

right cosets. The index of H in G is the number of right cosets (which is the same

as the number of left cosets, by Theorem 44.5), denoted [G : H]. The order of a

finite group G is the number of elements in the group, denoted |G|.
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Note. Exercise 44.2 requires a proof of the following: “If H is a finite subgroup of

a group G, then the number of distinct elements in any right coset Ha is always

equal to the number of distinct elements in H. The same holds for any left coset

aH.

Theorem 44.A. Lagrange’s Theorem.

If G is a finite group and H is a subgroup of G then the order of H divides the

order of G.
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