Section 46. Groups of Mappings

Note. We now consider mappings of the Gauss plane \mathbb{C} as elements of a group.

Theorem 46.1. The translation of the Gauss plane \mathbb{C} form an Abelian group \mathscr{T} which is isomorphic to the additive group of complex numbers. The group operation on \mathscr{T} is composition of mappings.

Theorem 46.2. The Group of Dilative Rotations.

The dilative rotations of the Gauss plane \mathbb{C} about the origin (of the form $z^{\prime}=a z$) form an Abelian group \mathscr{D} (where the binary operation is composition) which is isomorphic to the multiplicative group of the non-zero complex numbers.

Note. We now consider two subgroups of the group \mathscr{D} of dilative rotations.

Theorem 46.3. Groups of Central Dilations and Rotations.

The central dilations (of the form $z^{\prime}=a z$ where $a \in \mathbb{R}$ and $a \neq 0$) form a subgroup \mathscr{D}^{*} of \mathscr{D}. The rotations about the origin (of the form $z^{\prime}=a z$ where $|a|=1$) form a subgroup \mathscr{R}_{0} of \mathscr{D}. Both \mathscr{D}^{*} and \mathscr{R}_{0} are Abelian.

Note. We now address the direct isometries (in \mathscr{I}_{+}) and indirect isometries (in \mathscr{I}_{-}) of \mathbb{C}. This will give us a geometric interpretation of normal subgroups.

Theorem 46.4. The Group Property of Isometries.

The set \mathscr{I} of isometries of the Gauss plane \mathbb{C} form a group, with the subset \mathscr{I}_{+}of direct isometries form a normal subgroup. The set \mathscr{I}_{-}of indirect isometries form a coset with respect to \mathscr{I}_{+}. Both \mathscr{I}_{+}and \mathscr{I} are non-Abelian groups.

Note. In the following corollary to Theroem 46.4 we use "function notation" as opposed to the notation used by Pedoe.

Corollary 46.4. Let $A B C$ be a triangle and $A^{\prime} B^{\prime} C^{\prime}$ a triangle where $I(A)=A^{\prime}$, $I(B)=B^{\prime}$, and $I(C)=C^{\prime}$ for some direct isometry $I \in \mathscr{I}_{+}$. If $I_{1} \in \mathscr{I}$ is any isometry of the Gauss plane \mathbb{C} then the triangles with vertices $I_{1}(A), I_{1}(B), T_{1}(C)$ and vertices $I_{1}\left(A^{\prime}\right), I_{1}\left(B^{\prime}\right), I_{1}\left(C^{\prime}\right)$ are also related by a direct isometry; that is, there is $J \in \mathscr{I}_{+}$such that $J\left(I_{1}(A)\right)=I_{1}\left(A^{\prime}\right), J\left(I_{1}(B)\right)=I_{1}\left(B^{\prime}\right)$, and $J\left(I_{1}(C)\right)=I_{1}\left(C^{\prime}\right)$.

Note. The proof of Corollary 46.4 is based on the following diagram:

Pedoe uses this idea to claim: "...the property of being a map of a geometrical figure by an element of a normal subgroup is left unchanged (invariant) under the mappings by elements of this group G." See page 178.

Revised: 3/3/2019

