Section 46. Groups of Mappings

Note. We now consider mappings of the Gauss plane \mathbb{C} as elements of a group.

Theorem 46.1. The translation of the Gauss plane \mathbb{C} form an Abelian group \mathscr{T} which is isomorphic to the additive group of complex numbers. The group operation on \mathscr{T} is composition of mappings.

Theorem 46.2. The Group of Dilative Rotations.

The dilative rotations of the Gauss plane \mathbb{C} about the origin (of the form z' = az) form an Abelian group \mathscr{D} (where the binary operation is composition) which is isomorphic to the multiplicative group of the non-zero complex numbers.

Note. We now consider two subgroups of the group \mathscr{D} of dilative rotations.

Theorem 46.3. Groups of Central Dilations and Rotations.

The central dilations (of the form z' = az where $a \in \mathbb{R}$ and $a \neq 0$) form a subgroup \mathscr{D}^* of \mathscr{D} . The rotations about the origin (of the form z' = az where |a| = 1) form a subgroup \mathscr{R}_0 of \mathscr{D} . Both \mathscr{D}^* and \mathscr{R}_0 are Abelian.

Note. We now address the direct isometries (in \mathscr{I}_+) and indirect isometries (in \mathscr{I}_-) of \mathbb{C} . This will give us a geometric interpretation of normal subgroups.

Theorem 46.4. The Group Property of Isometries.

The set \mathscr{I} of isometries of the Gauss plane \mathbb{C} form a group, with the subset \mathscr{I}_+ of direct isometries form a normal subgroup. The set \mathscr{I}_- of indirect isometries form a coset with respect to \mathscr{I}_+ . Both \mathscr{I}_+ and \mathscr{I} are non-Abelian groups.

Note. In the following corollary to Theorem 46.4 we use "function notation" as opposed to the notation used by Pedoe.

Corollary 46.4. Let ABC be a triangle and A'B'C' a triangle where I(A) = A', I(B) = B', and I(C) = C' for some direct isometry $I \in \mathscr{I}_+$. If $I_1 \in \mathscr{I}$ is any isometry of the Gauss plane \mathbb{C} then the triangles with vertices $I_1(A), I_1(B), T_1(C)$ and vertices $I_1(A'), I_1(B'), I_1(C')$ are also related by a direct isometry; that is, there is $J \in \mathscr{I}_+$ such that $J(I_1(A)) = I_1(A'), J(I_1(B)) = I_1(B')$, and $J(I_1(C)) = I_1(C')$.

Note. The proof of Corollary 46.4 is based on the following diagram:

Pedoe uses this idea to claim: "... the property of being a map of a geometrical figure by an element of a normal subgroup is left unchanged (invariant) under the mappings by elements of this group G." See page 178. Revised: 3/3/2019