Section 49. Indirect Isometries and Reflections.

Note. In this section we explore fixed points of indirect isometries and give the canonical form of reflections.

Note 49.A. Consider the indirect isometry $z^{\prime}=a \bar{z}+b$ where $|a|=1$. If w is an invariant (fixed) point of the transformation then $w=a \bar{w}+b$ or $\bar{w}=\bar{a} w+\bar{b}$. Hence

$$
w=a(\bar{a} w+\bar{b})+b=a \bar{a} w+a \bar{b}+b=|a|^{2} w+a \bar{b}+b=w+a \bar{b}+b .
$$

So we must have $a \bar{b}+b=0$. This necessary condition for the existence of a fixed point is also sufficient, since $w=b / 2$ is fixed by such a transformation:

$$
a \bar{w}+b=a \overline{b / 2}+b=a \bar{b} / 2+b / 2+b / 2=(a \bar{b}+b) / 2+b / 2=b / 2=w .
$$

More completely, we have the following.

Theorem 49.2. Indirect Isometries as Reflections.

An indirect isometry $z^{\prime}=a \bar{z}+b$ has invariant points if and only if $a \bar{b}+b=0$. If it has an invariant point, it is a line reflection and has a whole line of invariant points. Every line reflection is an indirect isometry.

Definition. Let M be an indirect isometry with a fixed point. A canonical (or normal) form of M is $M=T_{w} \circ M_{a} \circ T_{w}^{-1}$ where $T_{w}: z^{\prime}=z+w$ for some fixed point w on the line of reflection of Theorem 49.2, and $M_{a}: z^{\prime}=a \bar{z}$ where $|a|=1$ and $\arg (a) / 2$ is the angle the reflection line makes with the real axis.

Note. Pedoe deals with coordinate transformations when discussing canonical forms of indirect isometries with fixed points. He changes from " z coordinates" to " Z coordinates" in which the indirect isometry satisfies $Z^{\prime}=\bar{Z}$. This is done by mapping the real axis (or the " X-axis") to a new X^{\prime}-axis which coincides with the reflection line. The imaginary axis (the Y-axis") is similarly mapped to a new Y^{\prime} axis (or a new imaginary axis) and the conjugation is done with respect to these new real and imaginary axes. With $z^{\prime}=a \bar{z}+b$, he as $z=Z \sqrt{a}+b / 2$ and $z^{\prime}=Z^{\prime} \sqrt{z}+b / 2$ (see page 191).

