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Section 61. A Model for the Projective Plane

Note. In this section we use the vector space V3 = C3 to create a model of

projective geometry. We define points and planes in the projective plane model by

associating points in V3 with each other (using an equivalence relation), effectively

“mod-ing out” a dimension in V3. We also discuss a point at infinity and a line at

infinity in a real linear space.

Note. In the previous section we used an equivalence relation to associate a line

(or “ray”) through the origin in C (minus the origin itself) with a point in the

projective plane. With this in mind, we introduce the next definition.

Definition. Let V3 represent the complex vector space C3 = {(y0, y1, y2) | y0, y1, y2 ∈

C}. If y 6= (0, 0, 0) then the ray of V3 is the set of vectors {(y0k, y1k, y2k) | k ∈

C, k 6= 0}. We denote this set as yk = (y0k, y1k, y2k). A point in the complex

projective plane is a ray of V3.

Note. As in any vector space, two vectors y = (y0, y1, y2) and z = (z0, z1, z2) in

V3 are linearly dependent if there exists complex scalars λ and µ, not both 0, such

that yλ + zµ = 0 (and are linearly independent otherwise). Notice that, unlike

in sophomore Linear Algebra (MATH 2010), we do not notationally distinguish

between vectors and scalars. For example, we have just used “0” to denote both

the scalar 0 and the vector 0. This is common practice in upper-level classes

where the context implies whether we are dealing with vectors or scalars. In Linear

Algebra, we would use the notation “0” for scalar zero and “~0” for the zero vector.
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Note 60.A. If vectors y and z are linearly independent, then neither is the zero

vector and so each determines a ray in V3. The span of y and z (i.e., the set of all

linear combinations of y and z) forms a subspace of V3. For X = yλ + zµ (that is,

for X in the span of x and y), we have the three equations:

X0 = y0λ + z0µ

X1 = y1λ + z1µ

X2 = y2λ + z2µ.

As shown in the proof of Theorem 60.1 (with some change in variables), we have

(y1z2 − y2z1)X0 +(y2z0 − y0z2)X1 +(y0z1 − y1z0)X2 = 0. Notice that this is a linear

homogeneous equation in (X0, X1, X2) and can be written as an equation involving

a determinant: ∣∣∣∣∣∣∣∣∣
X0 X1 X2

y0 y1 y2

z0 z1 z2

∣∣∣∣∣∣∣∣∣ = 0.

This equation represents both the plane in V3 (i.e., the span of two linearly in-

dependent vectors in V3) defined by distinct rays yλ and zµ, and the line in the

projective plane which joins the two distinct points y and z.

Note. We now have a model for the complex projective plane where points are

rays in V3 as defined above (or equivalence classes of points in V3) and lines are as

defined in Note 60.A (that is, as planes in V3).
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Definition/Note 60.B. Now consider the real space R3. Let π be a plane in R3

and choose a coordinate system in which π does not contain the origin O = (0, 0, 0).

A ray through O which is not parallel to plane π intersects π at a unique point P .

See Figure 61.1. If the ray is the set of points {(y0k, y1k, y2k) | k ∈ R}, then we

can define an equivalence relation as above where we associate all points in the set

with each other.

Figure 61.1 (revised)

This differs from the approach above, in that rays through O may be parallel to π.

If ray (z0, z1, z2)k is parallel to π the we say that the point (z0, z1, z2)is a point at

infinity (or an ideal point in π). If plane π has equation u0X0 + u1X1 + u2X2 = C

where C is a constant, then the equation of the plane through O which is parallel to

π is u0X0+u1X1+u2X2 = 0 (recall the formula for a plane in R3 and the orthogonal

vector to such a plane; see my online Calculus 3 [MATH 2110] on Section 12.5. Lines

and Planes in Space). Notice that this is also the formula for a line in the projective

space. We call this line the line at infinite in the plane π.

https://faculty.etsu.edu/gardnerr/2110/notes-12e/c12s5.pdf
https://faculty.etsu.edu/gardnerr/2110/notes-12e/c12s5.pdf


61. A Model for the Projective Plane 4

Note. We now return to the complex projective space. This spaced is based on

vectors in V3 (well, technically on equivalence classes of vectors in V3). Of course

V3 = C3 is a 3-dimensional space and has as its standard basis vectors E0 = (1, 0, 0),

E1 = (0, 1, 0), and E3 = (0, 0, 1). Recall that, in general, a basis of a vector space

is a linearly independent spanning space (see Definition 3.6 in my online notes for

Linear Algebra [MATH 2010] on Section 3.2. Basic Concepts of Vector Spaces).

Since V3 is dimension three, then any linearly independent set of three vectors

forms a basis for V3. Therefore, if E∗
) , E∗

1 , and E∗
2 are linearly independent vectors

in V3, the any vector y ∈ V3 can be uniquely written as a linear combination of the

form y = E∗
0λ + E∗

1µ + E∗
2ν (see Theorem 3.3, Unique Combination Criterion for a

Basis, in the Linear Algebra notes just mentioned). We continue to follow Pedoe’s

presentation, but a warning is appropriate. In a three dimensional vector space,

we represent vectors as an ordered triple of scalars (this is the “coordinate vector”

of the vector with respect to an ordered basis; see Section 3.3. Coordinatization of

Vectors in my online Linear Algebra notes). However, we also represent points in

a 3-dimensional space with an ordered triple. Pedoe is blurring the lines between

points and vectors! The notation is the same, but points and vectors in a finite

dimensional space are not the same! You can add vectors together, but you

cannot add points together. Vectors in Rn and Cn have magnitude and direction,

but points in Rn and Cn do not. Points in Rn and Cn have a location (in a sense,

they are nothing but location), but vectors in Rn and Cn do not have a location.

The proper way to address Rn and Cn are as vector spaces. We can then put a

geometric interpretation on these vector spaces and then we can “draw pictures.”

It’s the geometric interpretation that allows us to discuss lines, rays, and planes.

https://faculty.etsu.edu/gardnerr/2010/c3s2.pdf
https://faculty.etsu.edu/gardnerr/2010/c3s3.pdf
https://faculty.etsu.edu/gardnerr/2010/c3s3.pdf
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Note. With π as a plane in V3, if we choose three noncollinear points in π then

these three points determine three vectors in V3 (these vectors are in “standard

position” with their tail at O and head at the point in π). Every point P in π

can be written as P = E∗
0λ + E1µ + E∗

2ν. Think of P not as a point, but as a

vector. We can use “vectors” E∗
0 , E∗

1 , and E∗
2 (with the components of the vectors

the same as the coordinates of the corresponding points) to express plane π as

the translation of a vector space. Two linearly independent vectors parallel to π

are E∗
0 − E∗

1 and E∗
0 − E∗

2 (think geometrically here), and a translation vector is

any one of E∗
0 , E∗

1 , or E∗
2 . So any point P (interpreted as a vector) is of the form

P = E∗
0 + (E∗

0 − E∗
1)k1 + (E∗

0 − E∗
2)k2 (see Definition 2.6 of k-flat in my online

Linear Algebra notes on Section 2.5. Lines, Planes, and Other Flats). That is,

P = E∗
0λ + E∗

1µ + E∗
2ν for some λ, µ, ν ∈ C, as claimed.

Definition. Let π be a plane in V3. If E∗
0 , E∗

1 , and E∗
2 are noncollinear points in

π, then the triangle formed by E∗
0 , E

∗
1 , E

∗
2 is the triangle of reference. For point P

in π, where P = E∗
0λ + E∗

1µ + E∗
2ν, the triple (λ, µ, ν) is the coordinated of P with

respect to the given triangle of reference.

Note. Recall that “point P” in the projective plane is actually an equivalence

class of points in V3 and so every triple of the form (λk, µk, νk), k 6= 0, is also a

coordinate of P ; in fact, “the” coordinates of P form an equivalence class (also,

there was no uniqueness claim in the choice of λ, µ, and ν.

https://faculty.etsu.edu/gardnerr/2010/c2s5.pdf
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Example. Let ABC be three noncollinear points in V3 and let P be a point in

the plane π determined by A, B, C which is inside the triangle ABC. The lines

AP , BP , and CP cut the opposites sides of triangle ABC in points L, M , and N

respectively. See Figure 4.3. Since point L is on line BC then L = xB + x′C for

some x and x′. Similarly, M = yC +y′A for some y, y′, and N = zA+z′B for some

z, z′.

Figure 4.3

If P = (p, q, r) with respect to the triangle of reference ABC, then L = (0, q, r),

M = (p, 0, r), and N = (p, q, r). Also, L = (0, x, x′), M = (y′, 0, y), and N =

(z, z′, 0). So we ahve the ratios:

x : X ′ = q : r, y : y′ = r : p, z : z′ = p : q,

and therefore (x : x′)(y : y′)(z : z′) = (q : r)(r : p)(p : q) = 1. Hence we have

xyz = x′y′z′. This is the Theorem of Ceva (Theorem 4.3) in the projective plane

setting.
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