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1.4. Consistency

Note. In this section, we informally define absolute consistency and relative con-

sistency. We give an example of an absolutely consistent axiomatic system.

Note. In the previous section had the definition: “An axiomatic system is con-

sistent if no axiom contradicts any other, and no two deductions from the axioms

(these deductions are the theorems that follow from the axioms) contradict each

other.” Notice that this requires us to test all of the theorems that follow from

the axioms, so one would expect that establishing the consistency of an axiomatic

system to be quiet a chore! In practice consistency, when it can be established,

is given by exhibiting a specific model whose elements and relations satisfy the

axioms.

“Definition.” An axiomatic system is absolutely consistent if a model of the

system exists which involves objects and relations from the external (“real”) world.

If a model for the axiomatic system exists which involves objects and relations from

another axiomatic system (such as Euclidean geometry or elementary arithmetic)

then the system if relatively consistent.

Note. Since the external world cannot be inconsistent then an absolutely con-

sistent axiomatic system must be consistent. A relatively consistent axiomatic

system is consistent if the other axiomatic system to which it is relatively consis-
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tent is consistent (and if the other system is inconsistent then the original system

is inconsistent).

Note. We now give a collection of six axioms involving two undefined objects. We

will show the absolute consistency of the axiomatic system. The two undefined

objects are x and y. An undefined relation is “belonging to.” We take the axioms

as:

A.1. If x1 and x2 are any two (distinct) x’s, then there is at least one y belonging

to both x1 and x2.

A.2. If x1 and x2 are any two x’s, there is at most one y belonging to both x1 and

x2.

A.3. If y1 and y2 are any two y’s, there is at least one x belonging to both y1 and

y2.

A.4. If y1 is any y, there are at least three x’s belonging to y1.

A.5. If y1 is any y, there is at least one x which does not belong to y1.

A.6. There exists at least one y.

Note. We now give two models to show that this axiomatic system is consistent.

We follow Wylie examples, but update the names and terminology in the first

model. Suppose the x represents students and y represents academic clubs. We

interpret “x belongs to y” to mean that student x is a member of club y. We
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interpret “y belongs to x” to mean that y is a club that has x as a member.

Hence the relation “x belongs to y” holds if and only if “y belongs to x.” We take

the set of students as X = {Amy, Berg, Cindy, Dunn, Ellen, Ford, Ginger} and

the set of clubs as Y = {Math, Sociology, Physics, Astronomy, Abstract Algebra,

Engineering, History}. In the following table, we have that x belongs to y if and

only if there is an entry of B in the row determined by x and the column determined

by y:

Amy Berg Cindy Dunn Ellen Ford Ginger

Math B B B

Sociology B B B

Physics B B B

Astronomy B B B

Abstract Algebra B B B

Engineering B B B

History B B B

It is easily verified that Axioms A.4, A.5, and A.6 are satisfied. To verify Axioms

A.1 and A.2, we must consider every possible pair of students (of which there are(7
2

)
= 21) and confirm that there is one and only one club to which each pair of

students belong. To verify Axiom A.3, we must consider every possible pair of clubs

(of which there are
((
7

)
)(2) = 21) and confirm that there is at least one student

belonging to both clubs in the pair. The model, which we refer to as “Model 1,”

is a concrete, “real world” representation of the axiomatic system. There can be

no inconsistency in Model 1, unless there is an inconsistency in real life. So the

axiomatic system is absolutely consistent!
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Note. We new give Model 2 that will also represent the axiomatic system above.

This time, we take a more abstract approach. We represent x as a point in the

plane and have the set of points as X = {P1, P2, P3, P4, P5, P6, P7}. We then let y

represent either one of the line segments in Figure 1.1 of P1P2, P2P3, P1P3, P1P6,

P2P4 P3P5 or the circle P4P5P6, which we denote as s1, s2, s3, s4, s5, s6, and c,

respectively. So we have the set containing the y’s as Y = {s1, s2, s3, s4, s5, s6, c}

(notice from the figure that each element of Y contains three points of X). This

time, if point x is a point on segment (or circle) y then we have “x belongs to

y” and “y belongs to x” (and conversely). We can again verify that this model

satisfies Axioms A-1 through A.6 (and again confirm that the axiomatic system is

absolutely consistent).

Figure 1.1. Model 2



1.4. Consistency 5

Note. The configuration given n Figure 1.1 is called the Fano plane. It is the

simplest example of a finite projective plane. We have the following definition from

discrete math (see my online notes for Graph Theory 1 [MATH 5340] on Section 1.3.

Graphs Arising from Other Structures; the definition of “finite projective plan” is

from Exercise 1.3.13 of this section in Bondy and Murty’s Graph Theory, Graduate

Texts in Mathematics 244 (Springer, 2008)):

Definition. A geometric configuration (P,L) consists of a finite set P of elements

called points and a finite family L of subsets of P , called lines, with the property

that at most one line contains any given pair of points. A finite projective plane is

a geometric configuration (P,L) in which:

(i) any two points lie on exactly one line,

(ii) any two lines meet in exactly one point,

(iii) there are four points, not three of which lie on a line.

In Exercise I.3.13(a) of Bondy and Murty’s book, it is to be shown that for any finite

projective plane (P,L), there is an integer n ≥ 2 such that |P | = |L| = n2 + n + 1

where each point lies on n + 1 lines, and each line contains n + 1 points. This

integer is called the order of the finite projective plane. So the Fano plane is is a

finite projective plane of order 2.

Note. We will see Model 1 and Model 2 again in Section 1.6. Completeness and

Categoricalness, and we will explore finite projective planes in Section 1.7. Finite

Geometries (where they are called “finite projective geometries).
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