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1.5. Independence

Note. In this section, we show the axiomatic system given in Section 1.4 is inde-

pendent by showing the consistency of several associated axiomatic systems. We

also mention two historical examples when independence was originally overlooked.

Note. In the Section 1.3 we had the definition: “An axiomatic system is indepen-

dent if no axiom can be deduced as a theorem from the other axioms (notice that

this means that the axiomatic system is minimal).” An axiomatic system must

be consistent (as described in the previous section), but independence is not an

absolutely necessary property of an axiomatic system.

Note. In R.L. Devaney’s An Introduction to Chaotic Dynamical Systems (Addison-

Wesley, 1989) an “iterated function system” f : J → J is defined as chaotic if (1)

f is topologically transitive, (2) f has sensitive dependence on initial conditions,

and (3) periodic points of f are dense in J . Though not exactly an axiomatic

system, this definition gives three conditions on an iterated function system. It

was shown in 1992 that if an iterated function system is topologically transitive

and has denseness of periodic points, then it necessarily has sensitive dependence

on initial conditions; see J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey’s

“On Devaney’s Definition of Chaos,” The American Mathematical Monthly, 99(4),

332–334 (1992); this is available online from JSTOR (accessed 9/19/2021). See

also my online presentation A Mathematician Looks at Chaos given in the ETSU

Physics Department Seminar in March 1997. So the dependence of one part of the

definition on the other parts was not originally recognized.

https://www.jstor.org/stable/2324899?refreqid=excelsior%3A82f289deb1575c89cb3aee6a3fb9dcc1&seq=1#metadata_info_tab_contents
https://faculty.etsu.edu/gardnerr/talks/Chaos1.pdf
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Note. Though an independent axiomatic system is minimal, by starting with the

such a system we have less assumptions to work with and so proofs will be more

challenging. In the classroom setting, starting with the least possible number of

assumptions may make proving early theorems long, difficult, and impractical. As

Wylie states, “[i]n such cases, mathematical elegance must yield to pedagogical

necessity, and one or more of the theorems in question should be included among

the axioms,” along with an admission that these results actually follow from a

subset of the chosen axioms (a simpler approach is to just take the results as

having proofs “beyond the scope of the course,” at least at the beginning). Similar

to the definition of “chaotic” mentioned above, David Hilbert (January 23, 1862 –

February 14, 1943) introduced 21 axioms of Euclidean Geometry in his Grundlagen

der Geometrie (1899), one of which was shown to be dependent on the other 20 (this

was shown in E. H. Moore’s “On the Projective Axioms of Geometry,” Transactions

of the American Mathematical Society, 3, 142–158 (1902); a copy of this paper is

on the American Mathematical Society website [accessed 9/19/2021]). An English

edition of Hilbert’s work (the title in English is “The Foundations of Geometry”)

is available from Project Gutenberg (accessed 9/19/2021). We are particularly

interested in this part of Hilbert’s work, since our text book attempts in Chapter

2 to present a similar modern study of classical Euclidean geometry.

Note. We deal with independence in a way similar to the technique of Section 1.4

involving showing consistence. Namely, we use models. To show that a particular

axiom, Axiom A say, is independent of the other axioms in an axiomatic system, we

consider the new axiomatic system consisting of the negation of Axiom A along with

https://www.ams.org/journals/tran/1902-003-01/S0002-9947-1902-1500592-8/S0002-9947-1902-1500592-8.pdf
https://www.gutenberg.org/files/17384/17384-pdf.pdf
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the other original axioms. If we show that this new axiomatic system is consistent

(by giving a model for the new system), then Axiom A must be independent of the

other axioms (or else the new axiomatic system could not be consistent). That is,

for axiomatic system with axioms A1, A2, . . . , An, we consider the new axiomatic

system with axioms A1, A2, . . . , Ak−1, Ak+1, Ak+2, . . . , An and the negation of axiom

Ak. We give a model for the new axiom system which shows the consistence of the

new axiomatic system and hence the independence of axiom Ak from the other

axioms. Notice that this must be done for each k ∈ {1, 2, . . . , n} and so requires a

total of n models.

Note. Recall that the consistent axiomatic system we dealt with in the previous

section was:

A.1. If x1 and x2 are any two (distinct) x’s, then there is at least one y belonging

to both x1 and x2.

A.2. If x1 and x2 are any two x’s, there is at most one y belonging to both x1 and

x2.

A.3. If y1 and y2 are any two y’s, there is at least one x belonging to both y1 and

y2.

A.4. If y1 is any y, there are at least three x’s belonging to y1.

A.5. If y1 is any y, there is at least one x which does not belong to y1.

A.6. There exists at least one y.
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Consistence was given by the Model 2 in Figure 1.1 (with “belonging to” as de-

scribed in Section 1.4). We now show independence by giving six appropriate

models.

Note. Axiom A.1 is false when there are (distinct) x1 and x2 such that either (1)

there is no y belonging to both x1 and x2, or (2) there is more than one y belonging

to both x1 and x2. Consider the model of Figure 1.2 (with the same interpretation

of “belonging to” as used in Figure 1.1).

Figure 1.2

Here we have the set of x’s is X = {P1, P2, P3, P4, P5} and the set of y’s is Y =

{c1, c2}. Notice that Axiom A.1 is false since there is no y belonging to both P3

and P4; that is, neither c1 nor c2 belongs to both P3 and P4. It is straightforward

to verify the other axioms.
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Note. Axiom A.2 is false when there are (distinct) x1 and x2 such that there is

more than one y belonging to both x1 and x2. Consider the model of Figure 1.3

(with the same interpretation of “belonging to” as used in Figure 1.1).

Figure 1.3

Here we have the set of x’s is X = {P1, P2, P3, P4} and the set of y’s is Y =

{c1, c2, c3}. Notice that Axiom A.2 is false since there are two y belonging to both

P1 and P2; that is, c1 and c2 both belong to P1 and P2 (there are similar problems

with the pairs P1, P3 and P1, P4). It is straightforward to verify the other axioms.
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Note. Axiom A.3 is false when there are y1 and y2 such that no x belongs to both

y1 and y2. Here we can use ordinary plane Euclidean geometry as a model of the

new axiomatic system. We let set X be the points in the Euclidean plane and let

set Y be the set of lines in the Euclidean plane. We interpret “x belongs to y” to

mean that point x lies on line y, and we interpret “y belongs to x” to mean that

line y passes through point x. Axiom A.3 is false in this model, as we see when

y1 and y2 are parallel lines (which, by the definition of parallel, share not points).

The other axioms are easily seen to be satisfied.

Note. Axiom A.4 is false when there is some y such that less than three x’s belong

to y. We consider a somewhat different model for this new axiomatic system. Let

X = {P, Q, R} and Y = {{P, Q}, {Q,R}, {R,P}}. Then we say “x belongs to

y” if x ∈ y, and we say “y belongs to x if x ∈ y. Then Axiom A.4 is false since

y = {P, Q} has only two x’s (namely P and Q) belonging to it (of course there

is a similar situation with each y ∈ Y ). The other axioms are easily seen to be

satisfied. Wiley describes this model by considering the array

P Q R

Q R P

in which X = {P, Q, R} and Y consists of the three columns. Then we say “x

belongs to y” (and “y belongs to x”) if and only if x lies in column y.
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Note. Axiom A.5 is false when there is some y such that all x’s belong to y.

Consider Figure 1.4. Here we take X = {P1, P2, P3} and Y = {`} and, as done in

several cases above, interpret “belongs to” as either “lies on” or “passes through.”

Since all x’s belong to `, then Axiom A.5 is false. Axioms A.1, A.2, A.4, and A.6

are easily verified (since there are so few components in the model). Axiom A.3

states: “If y1 and y2 are any two y’s, there is at least one x belonging to both

y1 and y2.” This is true vacuously since there are not two y’s! That is, since the

hypothesis is false then the conclusion is true.

Figure 1.4

Note. Axiom A.6 is false when there is no y. So we consider the model X = {x}

and Y = ∅. Then Axiom A.6 is false. Each of the other Axioms A.1–A.5 are

satisfied vacuously since each of these axioms hypothesize either multiple x’s or at

least on y.

Note. We have considered six axiomatic systems, each containing five of the

original axioms and the negation of the sixth axiom, for the system of six axioms

given in Section 1.4 We have absolute consistence for each of these six axiomatic

systems by presenting a model for each (the consistence of the original six axioms

is given in Section 1.4).
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