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1.6. Completeness and Categoricalness

Note. In this section, we define a complete and a categorical axiomatic system.

We discuss these ideas in the context of concrete models, and define isomorphic

axiomatic systems. We conclude with a brief description of the work of Kurt Gödel

on completeness.

Note. Within an axiomatic system, a meaningful statement involving the unde-

fined terms and relations which is not a theorem has three possible statuses: (1) it

may be a theorem and a proof of it deduced from the axioms exists, (2) it may be

false and a proof of its negation exists, or (3) neither of these (it is an “undecidable”

statement). In the third case, it must be that the axiomatic system is not strong

enough to decide the statement. Perhaps more axioms can be added so that the

statement can be proved or disproved (or the statement itself can be added as an

axiom. . . or its negation can be added as an axiom). On the other hand, if every

meaningful statement can either be proved or disproved then no new axioms can

be added since any new axiom would be a meaningful statement and hence would

be, in this case, either provable or disprovable; when provable it would already

be an existing theorem and its addition as an axiom would introduce dependence,

and when disprovable its addition as an axiom would make the axiomatic system

inconsistent. These ideas inspire the next definition.
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Definition. A set of axioms is complete if it is impossible to enlarge it be adding

any other axiom which is consistent with, yet independent of, those already in the

system.

Note. In a complete axiomatic system, every meaningful statement can either be

proved or disproved; that is, there are no undecidable statements. It is hard to prove

that a given set of axioms is complete. On approach is based on “categoricalness,”

which we discuss next. The idea of completeness is due to Kurt Gödel (April

28, 1906–January 14, 1978). In his 1929 doctoral dissertation at the University

of Vienna he proved the completeness of a system called predicate calculus. He

published this in “Die Vollständigkeit der Axiome des logischen Funktionenkalküls

[The Completeness of the Axioms of the Logical Function Calculus],” Monatshefte

fr Mathematik (in German), 37(1), 349-360 (1930). We will discuss the work of

Gödel in more detail at the end of this section.

Note. Consider (absolutely consistent) axiomatic system S with two specific mod-

els M1 and M2 each of which contain the same number of elements (or more gener-

ally, the cardinalities of the sets of elements for the two models are the same). So

there is a one-to-one-correspondence (i.e., a bijection) between the elements of M1

and the elements of M2. Recall Model 1 of the axiomatic system from Section 1.4.

Consistency:

https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-1-4.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-1-4.pdf
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Amy Berg Cindy Dunn Ellen Ford Ginger

Math B B B

Sociology B B B

Physics B B B

Astronomy B B B

Abstract Algebra B B B

Engineering B B B

History B B B

and Model 2 for the system:

Figure 1.1. Model 2

Wylie describes a one-to-one-correspondence between these two models that does

not result in the same collection of relations. Of more interest is a one-to-one-

correspondence that does result in the same collection of relations. Consider the
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correspondences:

Model 1: Amy Berge Cindy Dunn Ellen Ford Ginger

l l l l l l l

Model 2: P2 P3 P6 P5 P1 P7 P4

Math Sociology Physics Astronomy Abstract Algebra Engineering History

l l l l l l l

s2 s1 s5 s6 s3 C s4

Under these correspondences, every relation in Model 1 corresponds to a relation in

Model 2, and vice versa. This idea allows us to extend the idea of an isomorphism

to the setting of axiomatic systems.

Definition. If there exists a one-to-one-correspondence between the elements of

two axiomatic systems which preserves all relations existing in either system, then

the correspondence is an isomorphism and the two systems are isomorphic.

Note. Two isomorphic axiomatic systems are structurally the same. The only

difference in the names given to the elements. We can illustrate this by replacing

the labels used in Figure 1.1 (which represents Model 2) with the labels from Model

1 (see Figure 1.5′ below). You are likely familiar with the idea of an isomorphism

from other settings. An isomorphism is always a bijection that preserves structure.

In an axiomatic system, the structure is the relations. In a graph, the structure is

adjacency and an isomorphism between two graphs is a bijection between the vertex

sets which preserves adjacency. In a group, the structure is the binary operation

and an isomorphism between two groups is a bijection between the elements of the
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groups that preserves the binary operation. The structure of a vector space is the

behavior of linear combinations of vectors. An isomorphism between two vector

spaces (over the same scalar field) is a bijection between the sets of vectors which

preserves linear combinations. I have online notes explaining these ideas for graphs

in Section 1.2. Subgraphs, Isomorphic Graphs (for Introduction to Graph Theory

[MATH 4347/5347]), for groups in Section I.3. Isomorphic Binary Structures (for

Introduction to Modern Algebra [MATH 4127/5127]), and for vector spaces in

Section 3.3. Coordinatization of Vectors (for Linear Algebra [MATH 2010]).

Figure 1.5′. A modified version of Wiley’s Figure 1.5.

Definition. An axiomatic system is categorical if each of its models are isomorphic

to ever other model.

https://faculty.etsu.edu/gardnerr/5347/Notes/Pearls-GT-1-2.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/I-3.pdf
https://faculty.etsu.edu/gardnerr/2010/c3s3.pdf
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Note. Informally, an axiomatic system is categorical if all of its models are “struc-

turally the same.” That is, there is “essentially” just one concrete representation

of the system. Category theory is introduced in Modern Algebra 1 (MATH 5410)

in Section I.7. Categories: Products, Coproducts, and Free Objects. If proper-

ties of a particular category of objects can be established, then one can show that

another object has all those properties if they can show that the other object in

in the particular category; this is the practical power of categories! In addition,

categoricalness implies completeness, as we now argue.

Theorem 1.6.A. If an axiomatic system is categorical then it is complete.

Idea of the Proof. Consider an axiomatic system which is categorical. ASSUME

that it is not complete. Since the system is not complete, then there is a statement

σ which can neither be proved nor disproved (it is undecidable). This means that

both σ and its negation are consistent with the axiomatic system. Consider two

models of the given axiomatic system, on in which σ is true and one in which

σ is false. Since the systems is categorical then, by definition, the two models

are isomorphic. But isomorphic models have corresponding statements in the two

models as both true or both false. But statement σ is true in one model and

false in the other, so no such isomorphism can exist, a CONTRADICTION. So the

assumption that a categorical axiomatic system is not complete is false, and hence

every categorical axiomatic system must be complete, as claimed.

https://faculty.etsu.edu/gardnerr/5410/notes/I-7.pdf
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Note. The axiomatic system of Section 1.4. Consistency is not categorical. Here

we give Model 3 for the system. We consider a model with 13 x’s (or “points”)

and 13 y’s (or “lines”). We represent the points as Pi and the lines as `i, where

1 ≤ i ≤ 13. In the following table, the columns represent the lines and the points

they contain:

Model 3

`1 `2 `3 `4 `5 `6 `7 `8 `9 `10 `11 `12 `13

P1 P3 P2 P3 P2 P1 P1 P2 P3 P1 P4 P7 P10

P6 P5 P4 P4 P6 P5 P4 P5 P6 P2 P5 P8 P11

P7 P8 P9 P7 P8 P9 P8 P7 P9 P3 P6 P9 P12

P10 P10 P10 P11 P11 P11 P12 P12 P12 P13 P13 P13 P13

Since this contains 13 x’s and 13 y’s, then this model cannot be isomorphic to

Model 1 or Model 2 (both of which contain 7 x’s and 7 y’s. Notice in Model 3 that

each y (i.e., line) contains exactly 4 x’s (i.e., points), and each x contains exactly

4 y’s.

Note. Wiley states on page 27 that “. . . the system is not categorical, and therefore

not complete. . . .” However, this does not follow from Theorem 1.6.A. It is the

contrapositive of the converse of Theorem 1.6.A, and so need not hold. In fact,

according to the Wikipedia page on Axiomatic Systems (accessed 10/20/2021; not

exactly an academic reference), “Completeness does not ensure the categoriality

(categoricity) of a system, since two models can differ in properties that cannot be

expressed by the semantics of the system.” Though not guaranteed, we do have

in the case of the axiomatic system of Section 1.4 that it is both not categorical

https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-1-4.pdf
https://en.wikipedia.org/wiki/Axiomatic_system
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(as just demonstrated) and not complete. Consider the statement σ: “If y1 is a y,

there are at most three x’s which belong to y1.” This statement is true in Models 1

and 2 and false in Model 3. If we add σ as an axiom to A.1, A.2, A.3, A.4, A.5, and

A.6 then we get an axiomatic system which we claim is categorical (two isomorphic

models being Models 1 and 2), and hence is complete by Theorem 1.6.A.

Note. If we are dealing with a noncategorical axiomatic system, then any theorems

we prove within the system are valid for every model for the system. One example

is the axiomatic system of Section 1.4 with axioms A.1 through A.6. Another

example is called “neutral geometry” which is a collection of results valid in both

Euclidean geometry and non-Euclidean geometry. On the other hand, if we are

interested in one particular model (such as Euclidean geometry), then we would

want a categorical set of axioms that admit that particular model (and that is the

“only model” for the system, up to isomorphism).

Note. As mentioned above, Kurt Gödel introduced the idea of completeness in an

axiomatic system. We now elaborate on some more details related to completeness.

This information is from R. Goldstein’s Incompleteness: The Proof and Paradox of

Kurt Gödel, W. W. Norton, Great Discoveries Series (2005). The rules of manip-

ulation in a formal axiomatic system are of three sorts: (1) the rules that specify

what the symbols are (the “alphabet” of the system), (2) the rules that specify

how the symbols can be put together to make “well-formed formulas” (or ‘WFF’s)

which include the claims of the system (the lemmas, corollaries, and theorems),
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and (3) the rules of inference that specify which WFFs can be derived from other

WFFs [Goldstein, page 86].

Kurt Gödel (April 28, 1906–January 14, 1978), image from MacTutor History of

Mathematics Archive biography of Gödel.

An axiomatic system is complete if a truth value can be put on every WFF. What

this means is that every meaningful statement can either be proven to be true or

false. (In geometry, examples of WFFs are: “Two lines, parallel to a third, are

parallel to each other” [true in Euclidean geometry], and “The sum of the mea-

sures of the angles of a triangle is less than 180◦” [false in Euclidean geometry].

An example of a statement which involves the objects of geometry, but is not a

WFF [since it is meaningless] is: “All points are parallel.”) As mentioned above,

Gödel proved the completeness of a system called predicate calculus. However, he

is better known from his two main results on incompleteness:

Gödel’s First Incompleteness Theorem. There are provably unprovable but

nonetheless true propositions in any formal system that contains elementary arith-

https://mathshistory.st-andrews.ac.uk/Biographies/Godel/
https://mathshistory.st-andrews.ac.uk/Biographies/Godel/
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metic, assuming that system to be consistent.

Gödel’s Second Incompleteness Theorem. The consistency of a formal sys-

tem that contains arithmetic can’t be formally proved with that system [Goldstein,

page 183].

What Gödel has shown is that there are meaningful statements in axiomatic sys-

tems (which include arithmetic) which can neither be proved to be true nor proved

to be false. Such statements are said to be undecidable. A specific example of this

is the Continuum Hypothesis which addresses the existence of a set of real numbers

S such that |N| < |S| < |R| (where |S| is the cardinality of set S). This idea

of undecidability was disturbing to a number of pure mathematicians of the time.

After all, these results, if not contradicting the work of Frege and Russell (who

sought to put all of mathematics on an axiomatic foundation using set theory),

is in direct contrast to the spirit of these works. However, other mathematicians

took the results in stride with the attitude that mathematics will continue to go

forward and undecidable propositions are now just part of the terrain. For more

information on these ideas (with some comments about the work of Frege, Russell,

and Hilbert), see my online presentation on Introduction to Math Philosophy and

Meaning (prepared for use in various junior and senior level pure math classes).

Revised: 12/29/2023

https://faculty.etsu.edu/gardnerr/GIS/math-meaning.pdf
https://faculty.etsu.edu/gardnerr/GIS/math-meaning.pdf

