2.10. The Parallel Postulate

Note. In this section, we

Definition 2.10.1. Two coplanar lines which do not intersect are parallel lines and each is said to be parallel to the other. We denote the fact that p and q are parallel lines as $p \| q$. Two noncoplanar lines are skew lines and are said to be it skew to each other.

Definition 2.9.2. A transversal of two coplanar lines is a line which intersects the union of the two lines in two points.

Definition. Let p and q be two coplanar lines and t a transversal of the lines. If P and Q are the points in which t intersects p and q, respectively (see Figure 2.27). If A and B are points on line p on opposite sides of P, and if C and D are points on line q on the same side of $\overleftrightarrow{P Q}$ as A and B, respectively, then $\angle A P Q, \angle D Q P$ and $\angle B P Q, \angle C Q P$ are pairs of alternate interior angles, and $\angle A P Q, \angle C Q P$ and $\angle B P Q, \angle D Q P$ are pairs of consecutive interior angles. If α and β are a pair of alternate interior angles then either angle and the angle vertical to the other are corresponding angles.

Figure 2.27

Theorem 2.10.1. If a pair of alternate interior angles formed by two coplanar lines and a transversal are congruent, then the lines are parallel.

Corollary 2.10.1. Two coplanar lines which are perpendicular to the same line are parallel.

Theorem 2.10.2. In the plane determined by a given point and a given line not containing the point, then there exists a line which passes through the given point and is parallel to the given line.

Postulate 17. The Parallel Postulate. There is at most one line parallel to a given line through a given point not on that line.

Theorem 2.10.3. If two lines are parallel, then the alternate interior angles determined by these lines and any transversal are congruent.

Theorem 2.10.4. A transversal which is perpendicular to one of two parallel lines is perpendicular to the other also.

Theorem 2.9.5. A line lies in the plane of two parallel lines and intersects one of the lines in a single point intersects the other in a single point also.

Theorem 2.10.6. I each of two coplanar lines is parallel to a third line, they are parallel to each other.

Definition 2.10.3. Two segments are parallel segments if and only if the lines which they determine are parallel.

Definition 2.10.4. Two rays, $\overrightarrow{A B}$ and $\overrightarrow{C D}$, are parallel rays if and only if
(1) the lines $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are parallel, and
(2) B and D lie on the same side of $\overleftrightarrow{A C}$.

Definition 2.10.5. Two rays, $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are antiparallel rays if and only if:
(1) the lines $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are parallel, and
(2) B and D lie on opposite sides of $\overleftrightarrow{A C}$.

Definition 2.10.6. A quadrilateral each of whose sides is parallel to the side opposite it is a parallelogram.

Theorem 2.10.7. Opposite sides of any parallelogram are congruent.

Theorem 2.10.8. If two sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram

Theorem 2.10.9. The diagnonals of a parallelogram bisect each other.

Theorem 2.10.10. If three or more parallel lines determine congruent segments on one transversal, then they determine congruent segments on every transversal.

