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2.2. A Brief Critique of Euclid

Note. In this section we discuss some weaknesses of Euclid’s approach to geometry.

We have already mentioned the futility of trying to define every term. We will also

address Euclid’s failure to deal with continuity appropriately and give a “proof”

that every triangle is isosceles by taking advantage of a Euclid’s weakness in dealing

with order relations (and “betweenness”).

Note. We mentioned in Section 1.3. Axiomatic Systems that an axiomatic system

includes undefined terms. Euclid does not take this approach and he has the fol-

lowing definitions of “point,” “straight line” (which is distinguished from a “line”),

and “plane angle.”

Definition. A point is that which has no part.

Definition. A straight line is a line which lies evenly with the points on itself.

Definition. A plane angle is the inclination to one another of two straight lines in

a plane which meet one another and do not lie in a straight line.

Of course this raises as many questions as it answers, since we now focus on the

terms “part,” “lies evenly,” and “inclination.”

Note. The next concern deals with continuity. Many of the results in the Elements

are inspired by compass and straight-edge constructions. In Book I Proposition I

Euclid presents the construction of an equilateral triangle in which additional,

unstated assumptions are needed. As in Figure 2.1(b), he starts with a line segment,

https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-1-3.pdf
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uses the compass to draw an arc of a circle of radius equal to the length of the

segment and centered at one end of the segment, and then uses the compass to

draw an arc of another circle of the same radius and centered at the other end

of the segment. Of course, this results in a point that is equidistant from both

endpoints of the segment and which can be used to construct the desired isosceles

triangle. This is shown in Figure 2.1(a) for the point “above” the line segment (we

know there is also such a point “below” the line segment). The continuity concern

deals with the intersections of the arcs of the circles. What if the lines have “holes”

in them or if the points on the arcs are distributed in such a way (“like beads on

a string,” as Wiley says on page 40) that the arcs can pass through each other

without intersecting? This is illustrated somewhat in Figure 2.1(b).

Figure 2.1

Note. It might sound odd to worry about these details which certainly violate our

intuitive ideas of circles. In fact, this plays out to a resolution in the 19th century.

Wendell Strong in “Is Continuity of Space Necessary to Euclid’s Geometry?” Bul-

letin of the American Mathematical Society, 4(9), 448–448 (June 1898) (a copy can

be downloaded from projecteuclid.org) discusses what he calls quadratic space. This

https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-4/issue-9/Is-continuity-of-space-necessary-to-Euclids-geometry-/bams/1183415404.full
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space consists of all points in the Cartesian plane which have quadratic coordinates

(a real number is quadratic if it can be obtained from the integers by a finite num-

ber of rational operations and extractions of square roots). The quadratic space is

everywhere discontinuous, yet any construction that can be performed with a com-

pass and a straightedge can be performed in this space! So in response to Strong’s

question in the title of his paper,“No!” However, two circles with quadratic centers

and quadratic radii which intersect in the continuous Cartesian plane intersect at

quadratic points. By restricting our attention to intersections of lines and circles

(which are themselves constructible from existing [constructible] points and dis-

tances), continuity is not needed! This certainly was not known to Euclid and was

not resolved until the study of field theory in modern algebra arose. Though not

actually developed with these problems in mind, the area of field theory in algebra

ultimately is the tool allowing us to classify Strong’s quadratic numbers. This is

covered in our Introduction to Modern Algebra 2 (MATH 4137/5137) in Section

VI.32. Geometric Constructions and our Modern Algebra 2 (MATH 5420) in Sec-

tion V.1.Appendix. Ruler and Compass Constructions. The rational numbers are

constructible as seen in Section 1.2. Similar Figures (see Figure 1.6). It can be

shown that the set of real constructible numbers C forms a subfield of the field of

real numbers (see Corollary 32.5 in the Introduction to Modern Algebra 2 notes)

and, in particular, the field of constructible real numbers C consists precisely of all

real numbers that we can obtain from Q by taking square roots of positive numbers

a finite number of times and applying a finite number of field operations. From the

Introduction to Modern Algebra 2 we have:

https://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/VI-32.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/V-1-A.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/V-1-A.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-1-2.pdf
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Theorem 32.6. The field of constructible real numbers consists pre-

cisely of all real numbers that we can obtain from Q by taking square

roots of positive numbers a finite number of times and applying a finite

number of field operations

See also Proposition V.1.16 in Section V.1.Appendix. Ruler and Compass Con-

structions of Modern Algebra 2. Additional details on constructions can be found

in my video “Compass Straightedge Constructions” on YouTube. This study of

constructible numbers ultimately grows out of the study of the three classical com-

pass and straightedge constructibility problems (Doubling the Cube, Squaring the

Circle, and Trisecting an Angle); these problems also serve as the original inspi-

ration for the study of the conic sections. For more detail on the history, see my

online notes for “Introduction to Modern Geometry (History)” (MATH 4157/5157)

on Section 1.8. Three Famous Problems of Greek Geometry and Chapter 3. Conic

Sections.

Note. Interestingly, the complexities of a continuum were first rigorously explored

in the work of Richard Dedekind (October 6, 1831–February 12, 1916). The real

line is a continuum due to the Axiom of Completeness. This is traditionally dealt

with in terms sets of real numbers with upper bounds. Concisely, the Axiom of

Completeness states that every set of real numbers with an upper bound has a least

upper bound. For details, see my online notes for Analysis 1 (MATH 4217/5217)

on Section 1.3. The Completeness Axiom. An alternative approach is the use of

“Dedekind cuts.” This idea was introduced in Dedekind’s 1858 work (first published

in 1872) “Continuity and Irrational Numbers” (a copy can be found online at

https://faculty.etsu.edu/gardnerr/5410/notes/V-1-A.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/V-1-A.pdf
https://www.youtube.com/watch?v=S24GYj1rWGs
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-1-8.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-Chapter-3.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-Chapter-3.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf


2.2. A Brief Critique of Euclid 5

Project Gutenberg). These ideas are informally explained in the setting of an

airplane taking off in my online Calculus 1 (MATH 1910) notes on Appendix A.6.

Theory of the Real Numbers. I also have a video of this material at A.6 Video (of

length (31:05)). On a personal note, I find it amazing that the idea of a line as a

continuum is as old as any other in geometry, but it was not until 1858 that an

appropriate axiomatic system was introduced to deal with this idea!

Note. Another critique of Euclid relates to the concept of “betweenness.” That is,

the order in which points appear on a line is largely left unaddressed; drawings are

used and “. . . it was sometimes for [Euclid] to establish with certainty the location

of one point with respect to others in a given discussion.” See Wylie’s pages 40

and 41. To illustrate this, we consider the following absurd result. This is a widely

circulated idea; a Google search of “all triangles are isosceles” gives about 5000

sites (as of 10/26/2021).

“Theorem.” Every triangle is isosceles.

“Proof.” Let 4ABC by an arbitrary triangle. Let the bisector of ∠BAC, intro-

duce the perpendicular bisector of side BC, and let O be their point of intersection,

as shown in Figure 2.2 below. Let points A′, B′, C ′ be, respectively, the points of

intersection of the perpendiculars from O to the sides BC, CA, and AB. Notice

by our construction that A′ is also the midpoint of side BC.

https://www.gutenberg.org/files/21016/21016-pdf.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/A6-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/A6-14E.pdf
https://etsu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=3e407a83-9778-458d-95ef-ac8500491404
https://www.google.com/
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Figure 2.2

We now present our argument in the two column style that you may have used in

high school geometry (we also use a notation for angles and triangles from high

school).

1. A′O = A′O. 1. Identity.

2. BA′ = A′C. 2. By construction.

3. ∠OA′B = ∠OA′C. 3. Both are right angles.

4. 4OA′B ∼= 4OA′C. 4. Side, Angle, Side.

5. OB = OC. 5. Corresponding parts of congruent 4’s.

6. AO = AO. 6. Identity.

7. ∠C ′AO = ∠B′AO. 7. AO bisects ∠BAC.

8. ∠AC ′O = ∠AB′O. 8. Both are right angles.

9. 4AC ′O ∼= 4AB′O. 9. Angle, Side, Angle.

10. AC ′ = AB′. 10. Corresponding parts of congruent 4’s.
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11. OC ′ = OB′. 11. Corresponding parts of congruent 4’s.

12. ∠OC ′B = ∠OB′C. 12. Both are right angles.

13. OB = OC. 13. By Step 5.

14. 4OC ′B ∼= 4OB′C. 14. Right angle, hypotenuse, leg.

15. C ′B = B′C. 15. Corresponding parts of congruent 4’s.

16. AB = AC ′ + C ′B. 16. C ′ is between A and B.

17. AB = AB′ + B′C. 17. Steps 10 and 15.

18. AC = AB′ + B′C. 18. B′ is between A and C.

19. AB = AC. 19. Steps 17 and 18.

Therefore 4ABC is an isosceles triangle. Since 4ABC is an arbitrary triangle,

then all triangles are isosceles, as claimed. Q.E.D. (NOT!)

Note. The problem in the previous “proof” is one of betweenness. The point O of

intersection of the bisector of ∠BAC and the perpendicular bisector of BC in fact

lies outside of 4ABC (as is to be shown in Exercise 2.11.10), so that one of the

points B′ and C ′ will lie between two vertices of the triangle while the other will

not (it will lie on one of the sides, AC or AB respectively, extended beyond the

vertices of 4ABC). We can see in Figure 2.2 that ∠BAO appears a little smaller

than ∠CAO, so that ∠BAC is not actually bisected by AO.

Note. Since we desire an axiomatic system for Euclidean geometry which will

leave the terms “point” and “line” as undefined (their meaning being given by

the axioms and the theorems which follow from the axioms), we cannot appeal to

figures and drawings! Wylie makes the following comment about the situation (see
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page 42):

“As a matter of fact, from the axioms of Euclid it is impossible to

determine whether the point O is inside or outside the triangle. Worse

yet, it is impossible using Euclid’s axioms, even to give a satisfactory

definition of the inside and outside of a triangle.”

Additional critiques can be aimed at Euclid’s treatment of distances, the measures

of angles, and the idea of congruence which is thought of in terms of superimposing

one object (angle or triangle, for example) on another and requires some concept

of transformations. In the remainder of this chapter, we address these problems

and present an axiomatic system for Euclidean geometry.
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