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2.5. Order Relations

Note. In this section we use the ordering of the real numbers R to put an order

relation on any line. For the formal definition of the ordering on R, see my online

notes for Analysis 1 (MATH 4217/5217) on Section 1.2. Properties of the Real

Numbers as an Ordered Field; notice that the existence of an ordering (in terms

of the existence of a positive subset) is an axiom of the real numbers. In what

follows, when a unit pair α{A, A′} is given (or understood), we denote the distance

between points A and B, mα(A, B), simply as AB.

Definition 2.5.1. A point B is said to be between the points A and C if and only

if:

(1) A, B, and C are distinct collinear points,

(2) AB + BC = AC.

Note. Notice that if AB + BC = AC with respect to one coordinate system,

then by Theorem 2.4.1 this equality holds with respect to any coordinate system.

So the idea of “between” is independent of the coordinate system used. In the

next theorem we see that betweenness on the real line (in terms of coordinates)

translates directly into betweenness on line `.

https://faculty.etsu.edu/gardnerr/4217/notes/1-2.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-2.pdf
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Theorem 2.5.1. Let A, B, and C be three points on line ` and let x, y, and z be,

respectively. The coordinates of these points in a coordinate system on `. Then B

is between A and C if and only if y is between x and z.

Corollary 2.5.1. Of three collinear points, one and only one is between the other

two.

Definition 2.5.2. If A and B are distinct points, the set consisting of A, B,

and all points which are between A and B is called a segment. This segment is

denoted AB or BA. Points A and B are the endpoints of segment AB. The set

consisting of all points of the segment except the endpoints A and B is the interior

of the segment. The measure of the distance between A and B is the length of the

segment. Segments with the same length are congruent segments. If AB and CD

are congruent, we write AB ∼= CD.

Note. The proof of the next result is to be given in Exercise 2.5.5. It follows from

Theorem 2.5.1 and Definition 2.5.2.

Theorem 2.5.2. If A and B are two points on a line ` and if, in any coordinate

system on `, A and B have coordinates a and b such that a < b, then the segment

AB is the same as the set of points whose coordinates x satisfy the relation a ≤

x ≤ b. If b < a, then the segment AB is the same as the set of points whose

coordinates satisfy the relation b ≤ x ≤ a.
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Definition 2.5.3. If A and B are two points then the set consisting of all points of

the segment AB and all points P such that B is between A and P is called a ray.

The ray determined by points A and B (in that order) is denoted
−→
AB and point A

is the endpoint of ray
−→
AB. Two rays with the same endpoint are concurrent. Two

concurrent rays which are collinear are opposite rays and each is opposite to the

other.

Note. The next theorem allows us to give a ray in terms of coordinates.

Theorem 2.5.3. Let A and B be distinct points and let a and b be, respectively,

the coordinates of these points in any coordinate system on
←→
AB. Then if a < b, the

ray
−→
AB is the same as the set of points whose coordinates x satisfy the condition

a ≤ x. If a > b, the ray
−→
AB is the same as the set of points whose coordinates

satisfy the condition a ≥ x.

Note. The next result is related to Theorem 2.5.3 and a proof is to be given in

Exercise 2.5.6.

Theorem 2.5.4. Let P be any point on an arbitrary line ` and let p be the

coordinate of P in any coordinate system on `. Then the set of points of ` whose

coordinates x satisfy the condition x ≤ p and the set of points whose coordinates

satisfy the condition x ≥ p are opposite rays on ` with common endpoint P .
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Note. The next result is reminiscent of Euclid’s compass and straightedge ap-

proach. It gives us two points on a line that are a given distance from a given

point.

Theorem 2.5.5. The Point-Plotting Theorem. If
−→
AB is a ray and d a positive

number, then there is exactly one point on
−→
AB and one point on the ray opposite

to
−→
AB such that the distance from A to each of these points relative to a given

unit pair is d.

Note. If we take d in Theorem 2.5.5 to be k ·AB where k is positive, then we get

the following theorem. Details are to be given in Exercise 2.5.7.

Theorem 2.5.6. If A and B are any two points and if k is an arbitrary positive

number, then there is a unique point P on
−→
AB such that AP = k ·AB. Moreover, is

the coordinates of A and B in a coordinate system on
←→
AB are a and b, respectively,

then the coordinate of P is the number p = a + k(b− a).

Note. With k = 1/2 in Theorem 2.5.6, we get the following special case. We will

use it to define the midpoint of a segment.

Corollary 2.5.1. There is a unique point P between two given points, A and

B, such that AP = PB. Moreover, if the coordinates of A and B are a and b,

respectively, then the coordinate of P is p = (a + b)/2.
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Definition. The point P of Corollary 2.5.1 such that AP = PB is the midpoint

of the segment AB. The midpoint of a segment is said to bisect the segment and,

more generally, any set of points whose intersection with a segment consists only

of the midpoint of the segment is said to bisect the segment.

Note 2.5.A. From Theorems 2.5.3 and 2.5.4 we have that for any point A on a

line, there are two opposite rays that have A as their common endpoint. These two

rays (excluding point A) can be interpreted as the two “sides” of A on the line.

These sides satisfy:

(1) any segment such as BC, whose endpoints are on the same side of A lies

entirely on that side of A, and

(2) any segment such as CD whose endpoints lie on opposite sides of A contains

A in its interior.

See Figure 2.7. This idea of “sides” will be carried into (2-dimensional) planes and

(3-dimensional) space below when we consider halfplanes and halfspaces, though

this will require another postulate.

Figure 2.7

To explore the ideas of sides of a plane in space, we first introduce the idea of a

“convex set” and revisit the sides of a point on a line in terms of convex sets.
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Definition 2.5.4. A set of points is convex if any segment whose endpoints belong

to the set lies entirely in the set.

Note. Figure 2.8 gives two convex sets (the triangle and circle) and one non-convex

set.

Figure 2.8

Theorem 2.5.7. The intersection of two convex sets is a convex set.

Note. Note 2.5.A can be stated in the terminology of convex sets as follows.
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Theorem 2.5.8. Any point A divides the rest of the points on any line containing

A into two classes such that:

(1) each set is convex, and

(2) any segment joining a point in one set to a point in the other contains A in its

interior.

Note. We now state a postulate that effectively mimics Theorem 2.5.8, but “raises

things by one dimension.” Instead of separating a line into two convex rays with a

point, it addresses separating a plane into two convex sets using a line.

Postulate 12. The Plane-Separation Postulate. For any plane and any line

lying in the plane, the points of the plane which do not belong to the line form two

sets such that:

(1) each set is convex, and

(2) any segment joining a point in one set to a point in the other intersects the

given line.

Definition. Each of the convex sets in a given plane, as described in Postulate

12, is a halfplane. The line of Postulate 12 is the edge of each halfplane (and the

line does not belong to either halfplane, as postulated) and is said to separate the

plane into the two halfplanes. Points in the same halfplane are said to lie on the
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same side of the given line, and two points which lie in different halfplanes are said

to lie on opposite sides of the given line.

Note. Surprisingly (I think), we do not need an additional postulate to extend the

idea of separation up another dimension. We can use the Plane Separation Postu-

late (Postulate 12) to show that a plane separates (3-dimensional) space into two

convex sets, similar to Theorem 2.5.8 (for the separation of a line with a point) and

Postulate 12 (for the separation of a plane with a line). In fact, these ideas can be

generalized to higher dimensions. The n-dimensional space you consider sophomore

Linear Algebra (MATH 2010) can be separated by a “hyperplane.” See my onlin

notes for Linear Algebra on Section 2.5. Lines, Planes, and Other Flats where a

hyperplane in Rn is defined as an (n− 1)-flat. Hyperplanes are address in a setting

more general than a finite dimensional vector space in ETSU’s Fundamentals of

Functional Analysis (MATH 5740). See my online notes for this class on Section

5.5. Geometric Versions of Hahn-Banach Theorem where hyperplanes are defined

as translations of maximal proper subspaces of a vector space. In this setting, the

vector space is separated into two halfspaces, analogous to our situation here.

Theorem 2.5.9. The points of space which do not lie in a given plane form two

sets such that:

(1) each set is convex, and

(2) any segment joining a point in one set to a point in the other set intersects the

given plane.

https://faculty.etsu.edu/gardnerr/2010/c2s5.pdf
https://faculty.etsu.edu/gardnerr/Func/notes/5-5.pdf
https://faculty.etsu.edu/gardnerr/Func/notes/5-5.pdf
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Definition. Each of the convex sets determined by the given plane in Theorem

2.5.9 is a halfspace. The plane itself is a face of each halfspace (the plane does

intersect either halfspace by definition) and is said to separate the space into two

halfspaces. Points in the same halfspace are said to lie on the same side of the given

plane, and two points which lie in different halfspaces are said to lie on opposite

sides of the given plane.

Note. The next theorem is an application of the Plane-Separation Postulate (Pos-

tulate 12). It will be used in Section 2.7. Further Properties of Angles (see the

proof of Theorem 2.7.1).

Theorem 2.5.10. If V is any point on the edge of a halfplane H and if A, B, and

X are three points in the union of H and its edge such that:

(1) no two of the points A, B, X are collinear with V and

(2) A and B lie on opposite sides of
←→
V X,

then A and X lie on the same side of
←→
V B, and B and X lie on the same side of

←→
V A.
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