Mathematical Statistics 1

Chapter 1. Introduction to Probability 1.5. The Definition of Probability—Proofs of Theorems

Table of contents

Theorem 1.5.1

- 2 Theorem 1.5.2. Finite Additivity
- 3 Theorem 1.5.3. Probability of the Complement
- 4 Theorem 1.5.4. Monotonicity
- 5 Theorem 1.5.5
- 6 Theorem 1.5.6
- 7 Theorem 1.5.7

Theorem 1.5.1. $Pr(\emptyset) = 0$.

Proof. Let $A_i = \emptyset$ for $i \in \mathbb{N}$. Since $A_i \cap A_j = \emptyset$ for any $i, j \in \mathbb{N}$ then this sequence of events is an infinite disjoint sequence and so by Axiom 3, Axiom of Countability, we have (since $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \emptyset = \emptyset$):

$$\Pr(\varnothing) = \Pr(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \operatorname{pr}(A_i) = \sum_{i=1}^{\infty} \Pr(\varnothing).$$

But the only real number *a* such that $a = \sum_{i=1}^{\infty} a$ is a = 0. Therefore $Pr(\emptyset) = 0$, as claimed.

Theorem 1.5.1. $Pr(\emptyset) = 0$.

Proof. Let $A_i = \emptyset$ for $i \in \mathbb{N}$. Since $A_i \cap A_j = \emptyset$ for any $i, j \in \mathbb{N}$ then this sequence of events is an infinite disjoint sequence and so by Axiom 3, Axiom of Countability, we have (since $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \emptyset = \emptyset$):

$$\Pr(\varnothing) = \Pr(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \operatorname{pr}(A_i) = \sum_{i=1}^{\infty} \Pr(\varnothing).$$

But the only real number *a* such that $a = \sum_{i=1}^{\infty} a$ is a = 0. Therefore $Pr(\emptyset) = 0$, as claimed.

Theorem 1.5.2. Finite Additivity. For any finite sequence of *n* disjoint events A_1, A_2, \ldots, A_n we have $\Pr(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \Pr(A_i)$.

Proof. Consider the infinite sequence of events A_1, A_2, \ldots in which A_1, A_2, \ldots, A_n are the *n* given disjoint events and $A_i = \emptyset$ for i > n. Then A_1, A_2, \ldots is an infinite sequence of disjoint events and $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{n} A_i$.

Theorem 1.5.2. Finite Additivity. For any finite sequence of *n* disjoint events A_1, A_2, \ldots, A_n we have $\Pr(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \Pr(A_i)$.

Proof. Consider the infinite sequence of events $A_1, A_2, ...$ in which $A_1, A_2, ..., A_n$ are the *n* given disjoint events and $A_i = \emptyset$ for i > n. Then $A_1, A_2, ...$ is an infinite sequence of disjoint events and $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{n} A_i$. So by Axiom 3, Axiom of Countability,

$$\Pr\left(\bigcup_{i=1}^{n} A_{i}\right) = \Pr\left(\bigcup_{i=1}^{\infty} A_{i}\right) = \sum_{i=1}^{\infty} \Pr(A_{i}) = \sum_{i=1}^{n} \Pr(A_{i}) + \sum_{i=n+1}^{\infty} \Pr(A_{i})$$
$$= \sum_{i=1}^{n} \Pr(A_{i}) + \sum_{i=n+1}^{\infty} 0 \text{ by Theorem 1.5.1}$$
$$= \sum_{i=1}^{n} \Pr(A_{i}),$$

as calimed.

Theorem 1.5.2. Finite Additivity. For any finite sequence of *n* disjoint events A_1, A_2, \ldots, A_n we have $\Pr(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \Pr(A_i)$.

Proof. Consider the infinite sequence of events A_1, A_2, \ldots in which A_1, A_2, \ldots, A_n are the *n* given disjoint events and $A_i = \emptyset$ for i > n. Then A_1, A_2, \ldots is an infinite sequence of disjoint events and $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{n} A_i$. So by Axiom 3, Axiom of Countability,

$$\Pr\left(\bigcup_{i=1}^{n} A_{i}\right) = \Pr\left(\bigcup_{i=1}^{\infty} A_{i}\right) = \sum_{i=1}^{\infty} \Pr(A_{i}) = \sum_{i=1}^{n} \Pr(A_{i}) + \sum_{i=n+1}^{\infty} \Pr(A_{i})$$
$$= \sum_{i=1}^{n} \Pr(A_{i}) + \sum_{i=n+1}^{\infty} 0 \text{ by Theorem 1.5.1}$$
$$= \sum_{i=1}^{n} \Pr(A_{i}),$$

as calimed.

Theorem 1.5.3. Probability of the Complement. For any event A, $Pr(A^c) = 1 - Pr(A)$.

Proof. Since A and A^c are disjoint events and $A \cup A^c = S$ (as observed above) then by Theorem 1.5.2, Finite Additivity, $Pr(S) = Pr(A) + Pr(A^c)$. Since Pr(A) = 1 by Axiom 2, Axiom of Total Probability, then $Pr(A^c) = Pr(S) - Pr(A) = 1 - Pr(A)$, and claimed.

Theorem 1.5.3. Probability of the Complement. For any event A, $Pr(A^c) = 1 - Pr(A)$.

Proof. Since A and A^c are disjoint events and $A \cup A^c = S$ (as observed above) then by Theorem 1.5.2, Finite Additivity, $\Pr(S) = \Pr(A) + \Pr(A^c)$. Since $\Pr(A) = 1$ by Axiom 2, Axiom of Total Probability, then $\Pr(A^c) = \Pr(S) - \Pr(A) = 1 - \Pr(A)$, and claimed.

Theorem 1.5.4. Monotonicity. If $A \subset B$ then $Pr(A) \leq Pr(B)$.

Proof. First we prove $B = A \cup (B \cap A^c)$. Of course A and $B \cap A^c$ are disjoint. Suppose $b \in B$. If $b \in A$ then $b \in A \cup (B \cap A^c)$, and if $b \notin A$ then $b \in A^c$ and so $b \in B \cap A^c$ and hence $b \in A \cup (B \cap A^c)$. So $B \subset A \cup (B \cap A^c)$.

Theorem 1.5.4. Monotonicity. If $A \subset B$ then $Pr(A) \leq Pr(B)$.

Proof. First we prove $B = A \cup (B \cap A^c)$. Of course A and $B \cap A^c$ are disjoint. Suppose $b \in B$. If $b \in A$ then $b \in A \cup (B \cap A^c)$, and if $b \notin A$ then $b \in A^c$ and so $b \in B \cap A^c$ and hence $b \in A \cup (B \cap A^c)$. So $B \subset A \cup (B \cap A^c)$. Suppose $a \in A \cup (B \cap A^c)$. Then either $a \in A$ (in which case $a \in B$ since $A \subset B$) or $a \in B \cap A^c$ (in which case $a \in B$). So $A \cup (B \cap A^c) \subset B$. Therefore, $B = A \cup (B \cap A^c)$.

Theorem 1.5.4. Monotonicity. If $A \subset B$ then $Pr(A) \leq Pr(B)$.

Proof. First we prove $B = A \cup (B \cap A^c)$. Of course A and $B \cap A^c$ are disjoint. Suppose $b \in B$. If $b \in A$ then $b \in A \cup (B \cap A^c)$, and if $b \notin A$ then $b \in A^c$ and so $b \in B \cap A^c$ and hence $b \in A \cup (B \cap A^c)$. So $B \subset A \cup (B \cap A^c)$. Suppose $a \in A \cup (B \cap A^c)$. Then either $a \in A$ (in which case $a \in B$ since $A \subset B$) or $a \in B \cap A^c$ (in which case $a \in B$). So $A \cup (B \cap A^c) \subset B$. Therefore, $B = A \cup (B \cap A^c)$. Now by Theorem 1.5.2, Finite Additivity,

 $\Pr(B) = \Pr(A \cup (B \cap A^c)) = \Pr(A) + \Pr(B \cap A^c).$

Since $Pr(B \cap A^c) \ge 0$ by Axiom 1, Axiom of Non-Negativity, then $Pr(A) \le Pr(B)$, as claimed.

Theorem 1.5.4. Monotonicity. If $A \subset B$ then $Pr(A) \leq Pr(B)$.

Proof. First we prove $B = A \cup (B \cap A^c)$. Of course A and $B \cap A^c$ are disjoint. Suppose $b \in B$. If $b \in A$ then $b \in A \cup (B \cap A^c)$, and if $b \notin A$ then $b \in A^c$ and so $b \in B \cap A^c$ and hence $b \in A \cup (B \cap A^c)$. So $B \subset A \cup (B \cap A^c)$. Suppose $a \in A \cup (B \cap A^c)$. Then either $a \in A$ (in which case $a \in B$ since $A \subset B$) or $a \in B \cap A^c$ (in which case $a \in B$). So $A \cup (B \cap A^c) \subset B$. Therefore, $B = A \cup (B \cap A^c)$. Now by Theorem 1.5.2, Finite Additivity,

$$\Pr(B) = \Pr(A \cup (B \cap A^c)) = \Pr(A) + \Pr(B \cap A^c).$$

Since $Pr(B \cap A^c) \ge 0$ by Axiom 1, Axiom of Non-Negativity, then $Pr(A) \le Pr(B)$, as claimed.

Theorem 1.5.5. For any event A, $0 \leq Pr(A) \leq 1$.

Proof. By Axiom 1, Axiom of Non-Negativity, $Pr(A) \ge 0$. By Axiom 2 Pr(S) = 1, and so by Theorem 1.5.4 $Pr(A) \le Pr(S) = 1$.

Therefore $0 \leq \Pr(A) \leq 1$, as claimed.

Theorem 1.5.5. For any event A, $0 \le \Pr(A) \le 1$.

Proof. By Axiom 1, Axiom of Non-Negativity, $Pr(A) \ge 0$. By Axiom 2 Pr(S) = 1, and so by Theorem 1.5.4 $Pr(A) \le Pr(S) = 1$.

Therefore $0 \leq \Pr(A) \leq 1$, as claimed.

Theorem 1.5.6. For any two events A and B,

$$\Pr(A \cap B^c) = \Pr(A) - \Pr(A \cap B).$$

Proof. By Theorem 2.11, events $A \cap B^c$ and $A \cap B$ are disjoint. By Theorem 1.5.2, Finite Additivity,

$$\Pr(A) = \Pr(A \cap B) + \Pr(A \cap B^c).$$

The claim now follows.

Theorem 1.5.6. For any two events A and B,

$$\Pr(A \cap B^c) = \Pr(A) - \Pr(A \cap B).$$

Proof. By Theorem 2.11, events $A \cap B^c$ and $A \cap B$ are disjoint. By Theorem 1.5.2, Finite Additivity,

$$\Pr(A) = \Pr(A \cap B) + \Pr(A \cap B^{c}).$$

The claim now follows.

Theorem 1.5.7. For any two events A and B,

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B).$$

Proof. By Theorem 1.4.11, $A \cup B = B \cup (A \cap B^c)$. So

 $Pr(A \cup B) = Pr(B) + Pr(A \cap B)$ by Theorem 1.5.2, Finite Additivity = $Pr(B) + Pr(A) - Pr(A \cap B)$ by Theorem 1.5.6. **Theorem 1.5.7.** For any two events A and B,

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B).$$

Proof. By Theorem 1.4.11, $A \cup B = B \cup (A \cap B^c)$. So

 $Pr(A \cup B) = Pr(B) + Pr(A \cap B)$ by Theorem 1.5.2, Finite Additivity = $Pr(B) + Pr(A) - Pr(A \cap B)$ by Theorem 1.5.6.