Mathematical Statistics 1

Chapter 2. Conditional Probability

2.1. The Definition of Conditional Probability—Proofs of Theorems

Table of contents

1 Theorem 2.1.2. Multiplication Rule for Conditional Probabilities

2 Theorem 2.1.3

3 Theorem 2.1.4. Law of Total Probability

Theorem 2.1.2. Multiplication Rule for Conditional Probabilities.

Suppose that A_1, A_2, \ldots, A_n are events such that $\Pr(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) \neq 0$. Then

$$Pr(A_1 \cap A_2 \cap \cdots \cap A_n) = Pr(A_1)Pr(A_2|A_1)Pr(A_3|A_1 \cap A_2)Pr(A_4|A_1 \cap A_2 \cap A_3)$$
$$\cdots Pr(A_n|A_1 \cap A_2 \cap \cdots \cap A_{n-1}).$$

Proof. Since $Pr(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) \neq 0$ by hypothesis, then by Theorem 1.5.4, "monotonicity," $\Pr(A_1 \cap A_2 \cap \cdots \cap A_i) > \Pr(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) > 0$ for $i-1,2,\ldots,n-1$. So by Theorem 2.1.1, with $A=A_i$ and $B = A_1 \cap A_2 \cap \cdots \cap A_{i-1}$ for $i = 1, 2, \dots, n$, we have

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)} = \frac{\Pr(A_1 \cap A_2 \cap \dots \cap A_i)}{\Pr(A_1 \cap A_2 \cap \dots \cap A_{i-1})}.$$

Mathematical Statistics 1 March 25, 2024 3 / 7

Theorem 2.1.2. Multiplication Rule for Conditional Probabilities.

Suppose that A_1, A_2, \dots, A_n are events such that $\Pr(A_1 \cap A_2 \cap \dots \cap A_{n-1}) \neq 0$. Then

$$Pr(A_1 \cap A_2 \cap \dots \cap A_n) = Pr(A_1)Pr(A_2|A_1)Pr(A_3|A_1 \cap A_2)Pr(A_4|A_1 \cap A_2 \cap A_3)$$
$$\dots Pr(A_n|A_1 \cap A_2 \cap \dots \cap A_{n-1}).$$

Proof. Since $\Pr(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) \neq 0$ by hypothesis, then by Theorem 1.5.4, "monotonicity," $\Pr(A_1 \cap A_2 \cap \cdots \cap A_i) \geq \Pr(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) > 0$ for $i-1,2,\ldots,n-1$. So by Theorem 2.1.1, with $A=A_i$ and $B=A_1 \cap A_2 \cap \cdots \cap A_{i-1}$ for $i=1,2,\ldots,n$, we have

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)} = \frac{\Pr(A_1 \cap A_2 \cap \cdots \cap A_i)}{\Pr(A_1 \cap A_2 \cap \cdots \cap A_{i-1})}.$$

Theorem 2.1.2 (continued)

Theorem 2.1.2. Multiplication Rule for Conditional Probabilities.

Suppose that A_1, A_2, \ldots, A_n are events such that $\Pr(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) \neq 0$. Then $Pr(A_1 \cap A_2 \cap \cdots \cap A_n) = Pr(A_1)Pr(A_2|A_1)Pr(A_3|A_1 \cap A_2)Pr(A_4|A_1 \cap A_2 \cap A_3)$

 $\cdots \Pr(A_n|A_1 \cap A_2 \cap \cdots \cap A_{n-1}).$

Proof (continued). So

$$Pr(A_{1})Pr(A_{2}|A_{1})Pr(A_{3}|A_{1} \cap A_{2})Pr(A_{4}|A_{1} \cap A_{2} \cap A_{3})$$

$$\cdots Pr(A_{n}|A_{1} \cap A_{2} \cap \cdots \cap A_{n-1})$$

$$= Pr(A_{1})\frac{Pr(A_{1} \cap A_{2})}{Pr(A_{1})}\frac{PR(A_{1} \cap A_{2} \cap A_{3})}{Pr(A_{1} \cap A_{2})}\frac{Pr(A_{1} \cap A_{2} \cap A_{3} \cap A_{4})}{Pr(A_{1} \cap A_{2} \cap A_{3})}$$

$$\cdots \frac{Pr(A_{1} \cap A_{2} \cap \cdots \cap A_{n})}{Pr(A_{1} \cap A_{2} \cap \cdots \cap A_{n-1})} = Pr(A_{1} \cap A_{2} \cap \cdots \cap A_{n})$$

(cancelling numerators with the following denominators), as claimed.

Theorem 2.1.3. Suppose A_1, A_2, \ldots, A_n, B are events such that $\Pr(B) \neq 0$ and $\Pr(A_1 \cap A_2 \cap \cdots \cap A_{n-1} | B) \neq 0$. Then

$$\frac{\Pr(A_1 \cap A_2 \cap \dots \cap A_n | B)}{\Pr(B)} = \Pr(A_1 | B) \Pr(A_2 | A_1 \cap B) \Pr(A_3 | A_1 \cap A_2 \cap B)$$

$$\dots \Pr(A_n | A_1 \cap A_2 \cap \dots \cap A_{n-1} \cap B).$$

Proof. Since $Pr(A_1 \cap A_2 \cap \cdots \cap A_{n-1}|B) > 0$ then by Theorem 1.5.4, "monotonicity,"

 $\Pr(A_1 \cap A_2 \cap \cdots \cap A_i | B) \ge \Pr(A_1, \cap A_2 \cap \cdots \cap A_{n-1} | B) > 0$ for $i = 1, 2, \dots, n-1$ and we have by Theorem 2.2.1 with $A = A_i$ and $C = A_1 \cap A_2 \cap \cdots \cap A_i \cap B$,

$$\Pr(A|C) = \Pr(A_i|A_1 \cap A_2 \cap \dots \cap A_{i-1} \cap B) = \frac{\Pr(A_1 \cap A_2 \cap \dots \cap A_i \cap B)}{\Pr(A_1 \cap A_2 \cap \dots \cap A_{i-1} \cap B)}$$

for i = 1, 2, ..., n.

Theorem 2.1.3. Suppose A_1, A_2, \ldots, A_n, B are events such that $\Pr(B) \neq 0$ and $\Pr(A_1 \cap A_2 \cap \cdots \cap A_{n-1} | B) \neq 0$. Then

$$\frac{\Pr(A_1 \cap A_2 \cap \dots \cap A_n | B)}{\Pr(B)} = \Pr(A_1 | B) \Pr(A_2 | A_1 \cap B) \Pr(A_3 | A_1 \cap A_2 \cap B)$$

$$\dots \Pr(A_n | A_1 \cap A_2 \cap \dots \cap A_{n-1} \cap B).$$

Proof. Since $Pr(A_1 \cap A_2 \cap \cdots \cap A_{n-1}|B) > 0$ then by Theorem 1.5.4, "monotonicity,"

 $\Pr(A_1 \cap A_2 \cap \cdots \cap A_i | B) \ge \Pr(A_1, \cap A_2 \cap \cdots \cap A_{n-1} | B) > 0$ for $i = 1, 2, \dots, n-1$ and we have by Theorem 2.2.1 with $A = A_i$ and $C = A_1 \cap A_2 \cap \cdots \cap A_i \cap B$,

$$\Pr(A|C) = \Pr(A_i|A_1 \cap A_2 \cap \cdots \cap A_{i-1} \cap B) = \frac{\Pr(A_1 \cap A_2 \cap \cdots \cap A_i \cap B)}{\Pr(A_1 \cap A_2 \cap \cdots \cap A_{i-1} \cap B)}$$

for i = 1, 2, ..., n.

Theorem 2.1.3 (continued)

Theorem 2.1.3. Suppose A_1, A_2, \dots, A_n, B are events such that $Pr(B) \neq 0$ and $Pr(A_1 \cap A_2 \cap \dots \cap A_{n-1} | B) \neq 0$. Then

$$\frac{\Pr(A_1 \cap A_2 \cap \cdots \cap A_n | B)}{\Pr(B)} = \Pr(A_1 | B) \Pr(A_2 | A_1 \cap B) \Pr(A_3 | A_1 \cap A_2 \cap B)$$

$$\cdots \Pr(A_n | A_1 \cap A_2 \cap \cdots \cap A_{n-1} \cap B).$$

Proof (continued). We have

$$Pr(A_{1}|B)Pr(A_{2}|A_{1}\cap B)Pr(A_{3}|A_{1}\cap A_{2}\cap B)\cdots Pr(A_{n}|A_{1}\cap A_{2}\cap \cdots \cap A_{n-1}\cap B)$$

$$=\frac{Pr(A_{1}\cap B)}{Pr(B)}\frac{Pr(A_{1}\cap A_{2}\cap B)}{Pr(A_{1}\cap B)}\frac{Pr(A_{1}\cap A_{2}\cap A_{3}\cap B)}{Pr(A_{1}\cap A_{2}\cap B)}$$

$$\frac{Pr(A_{1}\cap A_{2}\cap A_{3}\cap A_{4}\cap B)}{Pr(A_{1}\cap A_{2}\cap A_{3}\cap B)}\cdots \frac{Pr(A_{1}\cap A_{2}\cap \cdots \cap A_{n}\cap B)}{Pr(A_{1}\cap A_{2}\cap \cdots \cap A_{n-1}\cap B)}$$

$$=\frac{Pr(A_{1}\cap A_{2}\cap \cdots \cap A_{n}\cap B)}{Pr(B)},$$

as claimed.

Theorem 2.1.4. Law of Total Probability. Suppose the events B_1, B_2, \dots, B_k form a partition of sample space S and $Pr(B_i) \neq 0$ for $j = 1, 2, \dots, k$. Then, for every event A in S, $Pr(A) = \sum_{i=1}^{k} Pr(B_i) Pr(A|B_i).$

Proof. The events $B_1 \cap A$, $B_2 \cap A$, $B_3 \cap A$, ..., $B_k \cap A$ form a partition of set A, so by Theorem 1.5.2, "Finite Additivity," $\Pr(A) = \sum_{i=1}^k \Pr(B_i \cap A)$. Since $Pr(B_i) \neq 0$ for i = 1, 2, ..., k then by Theorem 2.1.1, $Pr(B_i \cap A) = Pr(B_i)Pr(A|B_i)$ for i = 1, 2, ..., k. Hence

 $Pr(A) = \sum_{i=1}^{k} Pr(B_i) Pr(A|B_i)$, as claimed.

7 / 7

Theorem 2.1.4. Law of Total Probability. Suppose the events B_1, B_2, \ldots, B_k form a partition of sample space S and $\Pr(B_j) \neq 0$ for $j = 1, 2, \ldots, k$. Then, for every event A in S, $\Pr(A) = \sum_{i=1}^k \Pr(B_j) \Pr(A|B_j)$.

Proof. The events $B_1 \cap A$, $B_2 \cap A$, $B_3 \cap A$, ..., $B_k \cap A$ form a partition of set A, so by Theorem 1.5.2, "Finite Additivity," $\Pr(A) = \sum_{j=1}^k \Pr(B_j \cap A)$. Since $\Pr(B_j) \neq 0$ for j = 1, 2, ..., k then by Theorem 2.1.1, $\Pr(B_j \cap A) = \Pr(B_j) \Pr(A|B_j)$ for j = 1, 2, ..., k. Hence $\Pr(A) = \sum_{j=1}^k \Pr(B_j) \Pr(A|B_j)$, as claimed.

Mathematical Statistics 1