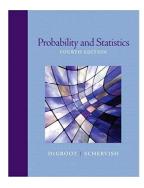
Mathematical Statistics 1

Chapter 2. Conditional Probability

2.2. Independent Events—Proofs of Theorems



Mathematical Statistics 1

July 31, 2019 1 / 4

Theorem 2.2.

Theorem 2.2.1

Theorem 2.2.1. If two events A and B are independent, then the events A and B^c are also independent.

Proof. Since $A = (A \cap B^c) \cup (A \cap B)$ then by Theorem 1.5.2, Finite Additivity, $\Pr(A) = \Pr(A \cap B^c) + \Pr(A \cap B)$ or $\Pr(A \cap B^c) = \Pr(A) - \Pr(A \cap B)$. Since A and B are independent then $\Pr(A \cap B) = \Pr(A)\Pr(B)$ and so

$$Pr(A \cap B^c)$$
 = $Pr(A) - Pr(A \cap B) = Pr(A) - Pr(A)Pr(B)$
 = $Pr(A)(1 - Pr(B))$
 = $Pr(A)Pr(B^c)$ by Theorem 1.5.3,
 Probability of the Complement,

and so, by definition, A and B^c are independent.

Mathematical Statistics 1 July 31, 2019 4 / 4

Exercise 2.2.2

Exercise 2.2.2

Exercise 2.2.2. Suppose events A and B are independent. Prove that events A^c and B^c are also independent.

Proof. We know by Theorem 1.5.3, Probability of the Complement, that $Pr(A^c) = 1 - Pr(A)$ and $Pr(B^c) = 1 - Pr(B)$. So

$$Pr(A^c)Pr(B^c) = (1 - Pr(A))(1 - Pr(B))$$

$$= 1 = Pr(A) = Pr(B) + Pr(A)Pr(B)$$

$$= 1 - Pr(A) - Pr(B) + Pr(A \cap B) \text{ since } A \text{ and } B$$
are independent

$$= 1 - (\Pr(A) + \Pr(B) - \Pr(A \cap B))$$

$$= 1 - Pr(A \cup B)$$
 by Theorem 1.5.6

=
$$Pr((A \cup B)^c)Pr((A \cup B)^c)$$
 by Theorem 1.5.3,
Probability of the Complement

$$= \Pr(A^c \cap B^c)$$
 by Exercise 1.4.4 , DeMorgan's Laws.

So, by definition, A^c and B^c are independent, as claimed.

() Mathematical Statistics 1 July 31, 2019 3 / 4