Mathematical Statistics 1

Chapter 2. Conditional Probability 2.2. Independent Events—Proofs of Theorems

Table of contents

Exercise 2.2.2

Exercise 2.2.2. Suppose events A and B are independent. Prove that events A^c and B^c are also independent.

Proof. We know by Theorem 1.5.3, Probability of the Complement, that $Pr(A^{c}) = 1 - Pr(A) \text{ and } Pr(B^{c}) = 1 - Pr(B). \text{ So}$ $Pr(A^{c})Pr(B^{c}) = (1 - Pr(A))(1 - Pr(B))$ = 1 = Pr(A) = Pr(B) + Pr(A)Pr(B) $= 1 - Pr(A) - Pr(B) + Pr(A \cap B) \text{ since } A \text{ and } B$ are independent $= 1 - (Pr(A) + Pr(B) - Pr(A \cap B))$ $= 1 - Pr(A \cup B) \text{ by Theorem } 1.5.6$

- = $Pr((A \cup B)^c)Pr((A \cup B)^c)$ by Theorem 1.5.3, Probability of the Complement
- = Pr($A^c \cap B^c$) by Exercise 1.4.4 , DeMorgan's Laws.

So, by definition, A^c and B^c are independent, as claimed.

Exercise 2.2.2

Exercise 2.2.2. Suppose events A and B are independent. Prove that events A^c and B^c are also independent.

Proof. We know by Theorem 1.5.3, Probability of the Complement, that $Pr(A^c) = 1 - Pr(A)$ and $Pr(B^c) = 1 - Pr(B)$. So $Pr(A^{c})Pr(B^{c}) = (1 - Pr(A))(1 - Pr(B))$ $= 1 = \Pr(A) = \Pr(B) + \Pr(A)\Pr(B)$ $= 1 - \Pr(A) - \Pr(B) + \Pr(A \cap B)$ since A and B are independent $= 1 - (\Pr(A) + \Pr(B) - \Pr(A \cap B))$ $= 1 - \Pr(A \cup B)$ by Theorem 1.5.6 = $Pr((A \cup B)^c)Pr((A \cup B)^c)$ by Theorem 1.5.3, Probability of the Complement = $Pr(A^c \cap B^c)$ by Exercise 1.4.4, DeMorgan's Laws.

So, by definition, A^c and B^c are independent, as claimed.

Theorem 2.2.1

Theorem 2.2.1. If two events A and B are independent, then the events A and B^c are also independent.

Proof. Since $A = (A \cap B^c) \cup (A \cap B)$ then by Theorem 1.5.2, Finite Additivity, $Pr(A) = Pr(A \cap B^c) + Pr(A \cap B)$ or $Pr(A \cap B^c) = Pr(A) - Pr(A \cap B)$.

Theorem 2.2.1

Theorem 2.2.1. If two events A and B are independent, then the events A and B^c are also independent.

Proof. Since $A = (A \cap B^c) \cup (A \cap B)$ then by Theorem 1.5.2, Finite Additivity, $Pr(A) = Pr(A \cap B^c) + Pr(A \cap B)$ or $Pr(A \cap B^c) = Pr(A) - Pr(A \cap B)$. Since A and B are independent then $Pr(A \cap B) = Pr(A)Pr(B)$ and so

- $Pr(A \cap B^{c}) = Pr(A) Pr(A \cap B) = Pr(A) Pr(A)Pr(B)$ = Pr(A)(1 Pr(B))
 - = $Pr(A)Pr(B^{c})$ by Theorem 1.5.3,

Probability of the Complement,

and so, by definition, A and B^c are independent.

Theorem 2.2.1

Theorem 2.2.1. If two events A and B are independent, then the events A and B^c are also independent.

Proof. Since $A = (A \cap B^c) \cup (A \cap B)$ then by Theorem 1.5.2, Finite Additivity, $\Pr(A) = \Pr(A \cap B^c) + \Pr(A \cap B)$ or $\Pr(A \cap B^c) = \Pr(A) - \Pr(A \cap B)$. Since A and B are independent then $\Pr(A \cap B) = \Pr(A)\Pr(B)$ and so

$$Pr(A \cap B^{c}) = Pr(A) - Pr(A \cap B) = Pr(A) - Pr(A)Pr(B)$$

= Pr(A)(1 - Pr(B))
= Pr(A)Pr(B^{c}) by Theorem 1.5.3,
Probability of the Complement,

and so, by definition, A and B^c are independent.