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Section 1.4. Set Theory

Note. In this section we introduce elementary set theory. In the next section we

set up the axioms of probability using the language of set theory.

Definition 1.4.1. The collection (or “set”) of all possible outcomes of an experi-

ment is the sample space of the experiment.

Note. We will consider subsets of the sample space which are called “events.” In
all of the examples encountered in this chapter, the set of events will include all
subsets of the sample space (that is, the set of events is the power set, P(S5), of
the sample space). For more general settings, though, we impose three conditions

which the set of events must satisfy. We now state the first condition:

Condition 1 of the Set of Events. The sample space S itself must be an event.

Note. Instead of elements of the sample space, we speak of “outcomes” in the

sample space. If outcomes a is in event A then we write a € A.

Note. We now review some elementary properties of “naive” set theory. For a

more formal treatment, see my online notes on Introductory Set Theory. Here,
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we mix the language of “sample space,” “event,” and “outcome” with the more

traditional set theoretic terminology.


http://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes.htm
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Definition 1.4.2. Set A is contained in set B if every element in A also is in B.
This is denoted A C B or B D A and also stated as B contains A. The common

set theoretic terminology is that A is a subset of B, or B is a superset of A.

Definition. Two sets A and B are equal, denoted A = B, if sets A and B contain

exactly the same elements.

Theorem 1.4.1. Let A, B, and C sets. If A C Band B C A, then A = B. If
AC Band BC C, then AC C.

Definition. The set consisting of no outcomes is the empty set, denoted &.

Note. Trivially, @ C A for any set A. DeGroot and Schervish state this (in terms

of events) as Theorem 1.4.2.

Note. We now distinguish between two types of infinite sets.

Definition 1.4.4. An infinite set A is countable if there is a one-to-one correspon-
dence (that is, a one to one and onto mapping) between the elements of A and the
set of natural numbers N = {1,2,3,...}. A set is uncountable is is is neither finite
nor countable. A set has at most countably many elements if it is either finite or

countable.
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Note. It might come a surprise to you that there are “big” and “small” infinite
sets. The standard Cantor diagonalization argument can be used to prove that the
interval (0,1) of real numbers is not countable. DeGroot and Schervish deal with
this on pages 13 and 14. For a more thorough presentation, see my online notes
for Analysis 1 (MATH 4217/5217) on 1.3. The Completeness Axiom (see Theorem
1-20). Notice also Cantor’s Theorem (Theorem 1-21) in these notes, which implies
that there are “larger and larger” infinite sets and that there is not a “largest

infinity.”

Definition 1.4.5. The complement of a set A is the event that contains all elements
in the universal set of discourse (the sample space S for our applications) which do

not belong to A. This is denoted A°.

Note. Trivially, (A°)° = A, @° = U (where U is the universal set of discourse,
U is the sample space S for our applications), and U¢ = S¢ = &. DeGroot and

Schervish state this (in terms of events) as Theorem 1.4.3.

Note. We are now ready to impose a second conditions on the set of events:
Condition 2 of the Set of Events. If A is an event, then A¢ is also an event.

Notice that this implies, by Condition 1, that & is an event.


http://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
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Definition 1.4.6. If A and B are any two sets, the union of A and B is the set
containing all outcomes that belong to A alone, to B alone, or to both A and B.

This is denoted A U B.

Theorem 1.4.4. With S as the sample space (or the “universal set”), we have:

AUB=BUA, AUA=A AUA° =S, AU = A, and AUS = S.

Definition 1.4.7. The union of n sets Ay, Ao, ..., A, is defined to be the set that
contains all elements that belong to at least one of these n sets. This is denoted
ATUAU---UA, =U" A;. Similarly, the union of an infinite sequence of sets
Aq, Ag, ... is the set that contains all elements that belong to at least one of the

sets in the sequence. This is denoted A; U Ay U .-+ = U2 A;.

Note. We can now state the final of the three conditions on the set of events:

Condition 3 of the Set of Events. If A;, As, ... is a countable collection of events,

then U, A; is also an event.

Note. Notice that Conditions 1, 2, and 3 on the set of events requires that the
universal set (sample set) S is an event, the complement of an event is an event,
and the countable union of a collection of events is an event. In measure theory,

a collection of sets satisfying these conditions is called a o-algebra of sets; see

my online notes for Real Analysis 1 (MATH 5210) on Section 1.4. Borel Sets. In


http://faculty.etsu.edu/gardnerr/5210/notes/1-4.pdf
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Real Analysis 1 we introduce Lebesgue measure on a collection of subsets of the
real numbers which form a o-algebra (the o-algebra of Lebesgue measurable sets).
Lebesgue measure is a generalization of the length of an interval and is used to
set up Lebesgue integration, which is a generalization of Riemann integration. A
class on modern probability theory requires a knowledge of Lebesgue measure and
Lebesgue integration (given in Real Analysis 1, MATH 5210), abstract measure and
integration (given in Real Analysis 2, MATH 5220), and Hilbert space, and linear
operators on normed linear spaces (given in Fundamentals of Functional Analysis,
MATH 5740). You can find my class notes for these classes, as well as notes on

probability theory as follows:

e Real Analysis 1

e Real Analysis 2

e Fundamentals of Functional Analysis

e Measure Theory Based Probability

Note. An additional property of the set of events as as follows. The proof simply

requires that we replace events A, .1, A,i0,... with @.

Theorem 1.4.5. The union of a finite number of events A;, Ao, ..., A, is an event.

Theorem 1.4.6. The Associative Property. For sets A, B,C we have (A U
B)uC =AU (BUCQC).


http://faculty.etsu.edu/gardnerr/5210/notes1.htm
http://faculty.etsu.edu/gardnerr/5210/notes3.htm
http://faculty.etsu.edu/gardnerr/Func/notes.htm
http://faculty.etsu.edu/gardnerr/Probability/notes.htm
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Note. Theorem 1.4.6 makes it unambiguous when we write AU BU C' as notation
for either (AU B) U C or U(B U C). Similarly we denote the union of n events
Al,AQ,...,AnaSA1UA2U"'UAn: ?:1142'.

Definition 1.4.8. For sets A and B, the intersection of A and B is the set that
contains all elements which belong to both A and B. This is denoted A N B.

Theorem 1.4.7. With S as the sample space (or the “universal set”), we have:

ANB=BNA ANA=A ANA =3, AN@ =0, and ANS = A.

Definition 1.4.9. The intersection of n sets Ay, As, ..., A, is defined to be the
set that contains all elements that belong to all of these n sets. This is denoted
AiNAyn---NA, =N A;. Similarly, the intersection of an infinite sequence of
sets Ay, Ag, ... is the set that contains all elements that belong to all of the sets in

the sequence. This is denoted Ay N Ay N -+ =N, A;.

Theorem 1.4.8. For sets A, B,C we have (ANB)NC =AN(BNC).

Note. Theorem 1.4.8 makes it unambiguous when we write AN BN C as notation
for either (AN B) N C or N(B N C). Similarly we denote the union of n events
Al,AQ,...,An as AlﬂAgﬂﬂAn = ?:1142'.
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Definition. If sets A and B have no elements in common (that is, ANB = &) then
A and B are disjoint or mutually exclusive. The n sets Ay, Ao, ..., A, are disjoint
if for every 7 # j we have that A; and A; are disjoint. An arbitrary collection of

sets is disjoint if no two of the sets in the collection have any elements in common.

Example 1.4.4. Suppose a coin is tossed three times. Then there are eight
possible outcomes (in order, in terms of heads H and tails T) in the sample space:
s1: HHH, s =THH, s3: HI'H, sy : HHT, s5 : HI'T, s¢ : LTHT, s7 : TTH,
sg : TTT. Let event A be the event that at least one head is obtained. Then
A = {s1, 89, S3, S4, S5, S6, S7}. Let B be the event that a head is obtained on the
second toss. Then B = {sy, $9, 84, S6}. Let C' be the event that a tail is obtained
on the third toss. Then C = {sy, s5, s¢, Ss}. Let D be the event that no heads are
obtained. Then D = {sg}. Notice that B C A, A=D, BND =g, AUC =8,
BNC ={sy,s6}, (BUC) ={s3,s7}, and AN (BUC) = {s1, S2, S4, S5, S6} -

Theorem 1.4.9. De Morgan’s Laws. For every two sets A and B we have

(AUB)" = A°N B° and (AN B)° = A°U B,

Note. The proof of Theorem 1.4.9 is to be given in Exercise 1.4.3. In fact, a more

general result holds. For ¢ an indexing set with events A; for ¢ € I, we can define
UictAi ={a|a € A; foralli € I} and Nie; A; = {a|a € A; foralli € I}

and then we have (UjerA;)" = NierAS and (NierA;)° = Uier AS. This is to be shown

in Exercise 1.4.5.
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Note. Notice by Condition 2 and Condition 3 on the set of events, the generalized
De Morgan’s Law implies that if Ay, Ay,..., A, are n events then N} ,A4; is an
event. Also, if Aj, As... is a sequence of events then M°; A; is an event. So the
collection of events is a collection of sets closed under complements, finite and
countable unions, and finite and countable intersections. By the way, this shows

that the set of events form a o-algebra of sets.

Note. The following two results are to be shown in Exercises 1.4.2 and 1.4.4.

These will be useful in Section 1.5, “The Definition of Probability.”

Theorem 1.4.10. Distributive Properties. For every three sets A, B,C we

have

AN(BUC)=(ANB)U(ANC) and AU(BNC) = (AUB)N(AUQ).

Theorem 1.4.11. Partitioning a Set. For every two sets A and B, AN B and
AN B¢ are disjoint and A = (AN B) Y (AN B°. In addition, B and AN B¢ are

disjoint and AU B = B (AN B°).
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