Section 1.5. The Definition of Probability

Note. In this section, we assume a probability has been assigned to each event in a sample space. We require that these probabilities satisfy three axioms and then prove some resulting properties of probability.

Note. When dealing with the union of disjoint (i.e., mutually exclusive) events, we indicate the disjointness with a special union symbol: \cup .

Note. We denote the probability of event A as Pr(A). As mentioned above, we assume function $Pr : \mathcal{A}(S) \to \mathbb{R}$ (that is, Pr is defined on a σ -algebra on the sample space S). We impose the following three axioms:

Axiom 1. Axiom of Non-Negativity. For any event A, $Pr(A) \ge 0$.

Axiom 2. Axiom of Total Probability. For S the sample space, Pr(S) = 1.

Axiom 3. Axiom of Countable Additivity. For any infinite sequence of disjoint events A_1, A_2, \ldots we have $\Pr(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \Pr(A_i)$.

Note. In Real Analysis 1 (MATH 5210) you will see that the behavior of the outer measure (and hence of the Lebesgue measure) of a set of real numbers is similar to the required conditions we impose on the probability function. For example, Countable Additivity is addressed in Section 2.1. Introduction and Section 2.3. The σ -Algebra of Lebesgue Measurable Sets (see Proposition 2.13) of my Real

Analysis 1 notes. In fact, one of the main applications of measure theory is to the theory of probability. For my class notes on this application, see Measure Theory Based Probability.

Definition. A function $Pr : \mathcal{A}(S) \to \mathbb{R}$ (where \mathcal{A} is a σ -algebra of events) which satisfies Axioms 1, 2, and 3 is a *probability measure*, or simply *probability*, on sample space S.

Note. We now establish some properties of Pr.

Theorem 1.5.1. $Pr(\emptyset) = 0$.

Theorem 1.5.2. Finite Additivity. For any finite sequence of n disjoint events A_1, A_2, \ldots, A_n we have $\Pr(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \Pr(A_i)$.

Note. Finite additivity for outer measure (and hence of Lebesgue measure) is addressed in Real Analysis 1 in Proposition 2.6 of Section 2.3. The σ -Algebra of Lebesgue Measurable Sets.

Theorem 1.5.3. Probability of the Complement. For any event A, $Pr(A^c) = 1 - Pr(A)$.

Theorem 1.5.4. Monotonicity. If $A \subset B$ then $Pr(A) \leq Pr(B)$.

Note. Monotonicity of outer measure (and hence of Lebesgue measure) is addressed in Lemma 2.2.A of my Real Analysis 1 online notes for Section 2.2. Lebesgue Outer Measure.

Theorem 1.5.5. For any event $A, 0 \leq Pr(A) \leq 1$.

Theorem 1.5.6. For any two events A and B,

$$\Pr(A \cap B^c) = \Pr(A) - \Pr(A \cap B).$$

Theorem 1.5.7. For any two events A and B,

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B).$$

Note. If events A and B are disjoint (or "mutually exclusive") then we have by Theorem 1.5.7 that $Pr(A \cup B) = Pr(A) + Pr(B)$.

Theorem 1.5.8. Bonferroni Inequality. For all events A_1, A_2, \ldots, A_n .

$$\Pr(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} \Pr(A_i) \text{ and } \Pr(\bigcap_{i=1}^{n} A_i) \ge 1 - \sum_{i=1}^{n} \Pr(A_i^c).$$

4

Note. Theorem 1.5.8, the Bonferroni Inequality, is to be proved in Exercise 1.5.13. In measure theory, the first property is called *finite subadditivity*. We can also show that any sequence of events A_1, A_2, \ldots satisfies $\Pr\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} \Pr(A_i)$. In measure theory, the corresponding property is called *countable subadditivity*; see Proposition 2.3 of my Real Analysis 1 online notes on Section 2.2. Lebesgue Outer Measure. Notice that $\sum_{i=1}^{\infty} \Pr(A_i)$ might diverge to ∞ (perhaps this is why DeGroot and Schervish exclude the sequence case as an exercise).

Revised: 7/16/2019