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Section 1.7. Counting Methods

Note. In this section we present some methods of determining the total number

of outcomes of certain experiments without actually listing all the outcomes.

Example 1.7.2. We consider an experiment satisfying:

(1) The experiment is performed in two parts.

(2) The first part of the experiment has m possible outcomes x1, x2, . . . , xm and

(regardless of the first outcome) the second part of the experiment has n

possible outcomes y1, y2, . . . , yn.

Then the sample space S of this experiment consists of mn ordered pairs (x1, y2),

(x1, y2), . . . (xm, yn). This illustrates the multiplication rule.

Theorem 1.7.2. If an experiment consists of k parts where the number of out-

comes of part i is ni then, by repeated application of the multiplication rule, the

sample space of the experiment has n1n2 · · ·nk outcomes.

Definition 1.7.1/Theorem 1.7.3. For n ∈ N we define n factorial as n! =

n(N − 1)(n − 2) · · · (3)(2)(1). We define 0! = 1. For n ∈ N and k an integer such

that 0 ≤ k ≤ n the number of permutations of n elements taken k at a time is

Pn,k = n(n− 1)(n− 2) · · · (n− k + 1) =
n!

(n− k)!
.

(Sometimes this is denoted nPk.)
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Note. If we arrange a collection of k items from a set of n distinct items, then

there are n choices for the first position, n− 1 choices for the second position, . . . ,

and n− k + 1 choices for the kth position. So by the multiplication rule there are

n(n− 1)(n− 1) · · · (n− k + 1) = Pn,k different arrangements. So the permutations

of n elements taken k at a time describes the number of ways to arrange k objects

from a collection of n objects. The text book gives this as Theorem 1.7.4.

Exercise 1.7.2. In how many different ways can the five letters a, b, c, d, and e

be arranged?

Solution. We want the number of ways to arrange k = 5 things from a set of size

n = 5. The number of such arrangements is

P5,5 =
5!

(5− 5)!
=

5!

0!
= 120.

Note. An experiment in which a first object is chosen from a set of n objects

and the first object is removed from the set, then a second object is chosen from

the remaining n − 1 objects and the second object is removed from the set, and

so forth is called sampling without replacement. When k such objects are chosen,

the experiment has a sample space of size Pn,k = n!/(n − k)!. If the objects are

replaced after each is chosen in the above experiment then this is called sampling

with replacement. The sample space for sampling with replacement is of size nk.
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Example 1.7.11. Obtaining Different Numbers. A box contains n balls

numbered 1, 2, . . . , n. A first ball is chosen, its number noted, and the ball is

returned to the box. This process is iterated until k numbers have been noted.

We now calculate the probability that each of the k balls that are selected have a

different number. If k > n then the probability is 0 so we now consider the case

1 ≤ k ≤ n. We represent an outcome as a vector (x1, x2, . . . , xk). The number of

such vectors with all different components is Pn,k = n!/(n− k)!. The total number

of such vectors is nk and so the sample space is of size nk. We reasonably take this

to be a simple sample space, so the probability that the k selected balls all have

different numbers is Pn,k
1

nk
=

n!

(n− k)!nk
. Notice that the complement of the event

“all have different numbers” is that at least two numbers are the same. So the

probability that at least two numbers are the same is 1− n!

(n− k)!nk
by Theorem

1.5.3, Probability of the Complement.

Example. The Birthday Problem. We now compute the probability that, in

a group of k people (where 2 ≤ k ≤ 365), at least 2 have the same birthday. We

assume that the 365 birthdays (ignoring February 29) yield a simple sample space.

This is just a rewording of Example 1.7.3 with n = 365. So the probability that k

people have all different birthdays is P365,k/365k and the probability that at least

two people have the same birthday is

p = 1− P365,k

365k
= 1− 365!

(365− k)!365k
= 1− 365

365

364

365

363

365
· · · 365− k + 1

365
.

Surprisingly, at only k = 23 the probability of at least one shared birthday is over

1/2. Table 1.1 gives different values of p in terms of k.
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Table 1.1 (extended). The probability p that at least two people

in a group of k people have the same birthday.

k p k p

2 0.003 21 0.444

3 0.008 22 0.476

4 0.016 23 0.507

5 0.027 24 0.538

6 0.040 25 0.569

7 0.056 26 0.598

8 0.074 27 0.627

9 0.095 28 0.654

10 0.117 29 0.681

11 0.141 30 0.706

12 0.167 31 0.730

13 0.194 32 0.753

14 0.223 33 0.775

15 0.253 34 0.795

16 0.283 35 0.814

17 0.315 40 0.891

18 0.347 50 0.970

19 0.379 60 0.994

20 0.411 100 0.9999997
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Note. Numerical computation of n! yields huge results. DeGroot and Schervish

state (without proof) Stirling’s formula which gives a way to approximate n! using

exponentiation.

Theorem 1.7.5. Stirling’s Formula. Let

sn =
1

2
log(2π) +

(
n +

1

2

)
log(n)− n.

Then limn→∞ |sn − log(n!)| = 0. Put another way,

lim
n→∞

(1π)1/2nn+1/2e−n

n!
= 1.
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