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Section 1.8. Combinatorial Methods

Note. We consider two methods of counting: combinations and binomial coeffi-

cients.

Definition 1.8.1. Consider a set with n elements. Each subset of size k chosen

from this set is called a combination of n elements taken k at a time. We denote

the number of distinct such combinations by the symbol Cn,k.

Note. Consider a set of n distinct elements. We want to count the number of

different subsets containing k elements of the set where 1 ≤ k ≤ n. Now there are

Pn,k arrangements of k elements from the set. Since we want to count the different

subsets (in which case order does not matter), then each given collection of k

objects is counted several times in the Pn,k arrangements; in fact, each collection of

k elements is counted Pk,k = k! times (the number of arrangements of k objects).

So the number of combinations of k elements from a set of size n is

Pn,k

Pk,k
=

n!

(n− k)!k!
= Cn,k.

Therefore we have the following.

Theorem 1.8.1. The number of distinct subsets of size k that can be chosen from

a set of size n is

Cn,k =
Pn,k

Pk,k
=

Pn,k

k!
=

n!

(n− k)!k!
.
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Exercise 1.8.4. A box contains 24 light bulbs, of which 4 are defective. If a

person selects 4 bulbs from the box at random, without replacement, what is the

probability that all 4 bulbs will be defective?

Solution. With n = 24 and k = 4, we see that there are

C24,4 =
24!

20!4!
=

(24)(23)(22)(21)

24
= (23)(22)(21) = 10, 626

different ways to choose 4 bulbs from the box of 24. But there is only one of these

combinations that contains all 4 defective bulbs. So the probability of selecting all

4 bulbs is 1/10,626. �

Theorem 1.8.2. The Binomial Theorem.

For any real numbers x and y and n ∈ N we have

(x + y)n =
n∑

k=0

n!

(n− k)!k!
xkyn−k =

n∑
k=0

(
n

k

)
xkyn−k.

Note. We can prove the Binomial Theorem using mathematical induction.

Note. Suppose a set of size n consists two distinct types of objects, say k red balls

and n− k green balls. If we wish to arrange all n of these balls, this is equivalent

to choosing the k locations for the red balls (or equivalently, the n− k position for

the green balls). So the binomial coefficient
(
n
k

)
=

(
n

n−k

)
describes the number of

ways this can be done.



1.8. Combinatorial Methods 3

Example 1.8.7. Tossing a Coin. Suppose that a fair coin is to be tossed ten

times. We calculate the probability of obtaining exactly three heads. In ten tossed

there are 210 possible outcomes. For an outcome to contain exactly three heads,

we need to choose the three “positions” corresponding to the tosses yielding heads.

There are (
10

3

)
=

10!

7!3!
=

(10)(9)(8)

6
= 120

such choices and so of the 210 = 1024 outcomes, 120 of them contain exactly three

heads. So the desired probability is
(10

3

)
/210 = 120/1024 = 15/128 ≈ 0.1172. �

Example 1.8.8. Sampling Without Replacement. Suppose that a class con-

tains 15 boys and 30 girls, and that 10 students are to be selected at random for

a special assignment. We will calculate the probability p that exactly 3 boys will

be selected. The total number of committees that can be formed is C45,10 =
(45
10

)
.

There are C15,3
(15

3

)
ways to choose 3 boys and C30,7 =

(30
7

)
ways to create the com-

mittee with 7 girls. So by the multiplication rule, there are
(15

3

)(30
7

)
ways to crate

the committee with 3 boys and 7 girls. So the probability p is

p =

(15
2

)(30
7

)(45
10

) ≈ 0.2904.

�

Note. A similar analysis as that given in Example 1.8.8 can be used to calculate the

probability of being dealt certain hands of cards. See Example 1.8.9 and Exercise

1.8.10.
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Example. The Tennis Tournament. Quoting from pages 29 and 30: “We shall

now present a difficult problem that has a simple and elegant solution. Suppose

that n tennis players are entered in a tournament. In the first round the players

are paired one against another at random. The loser in each pair is eliminated

from the tournament, and the winner is each pair continues into the second round.

If the number of players n is odd, then one player is chosen at random before the

pairings are made for the first round, and [s]he automatically continues into the

second round. All the players in the second round are then paired at random.

Again, the loser in each pair is eliminated, and the winner in each pair continues

into the third round. If the number of players in the second round is odd, then

one of these players is chosen at random before the others are paired, and [s]he

automatically continues into the third round. The tournament continues in this

way until only two players remain in the final round. They then play against each

other, and the winner of this match is the winner of the tournament. We shall

assume that all n players have equal ability, and we shall determine the probability

p that two specific players A and B will play against each other at any time during

the tournament.”

Since n− 1 players must be eliminated then n− 1 matches must be played. Due

to the randomness in terms of being assigned to play a match and the randomness

of a victory, the probability of particular players A and B together in a match is

just 1/
(
n
2

)
, since there are

(
n
2

)
possible total matches. Since n − 1 matches are

played, the total probability that A and B play each other in the tournament is

p =
n− 1(

n
2

) =
n− 1

n(n− 1)/2
=

2

n
. �
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