Introduction to Knot Theory

Chapter 5. Algebraic Techniques

5.3. Conjugation and the Labeling Theorem—Proofs of Theorems

Introduction to Knot Theory

February 18, 2021 1 / 6

Theorem 5.3.A

Theorem 5.3.A. In the symmetric group S_n , two elements are conjugate if and only if they have the same cycle structure.

Proof. We base the proof on Exercise I.6.3 of Thomas W. Hungerford's Algebra, Graduate Texts in Mathematics #73, NY: Springer Verlag (1974), which state: If $\sigma = (i_1, i_2, \dots, i_r) \in S_n$ and $\tau \in S_n$, then $\tau \sigma \tau^{-1}$ is the r-cycle $(\tau(i_1), \tau(i_2), \dots, \tau(i_r))$. Let $\pi \in S_n$ and let

$$\pi = (a_1^1, a_2^1, \dots, a_{n_1}^1)(a_1^2, a_2^2, \dots, a_{n_2}^2) \cdots (a_1^r, a_2^r, \dots, a_{n_r}^r)$$

Introduction to Knot Theory

be a unique (up to order of the factors) product of π as disjoint cycles, which exists by Hungerford's Theorem I.6.3.

February 18, 2021

Theorem 5.3.A (continued 1)

Theorem 5.3.A. In the symmetric group S_n , two elements are conjugate if and only if they have the same cycle structure.

Proof (continued). Then for any $\tau \in S_n$ we have by conjugation τ that

$$\tau \pi \tau^{-1} = \tau(a_1^1, a_2^1, \dots, a_{n_1}^1) \tau^{-1} \tau(a_1^2, a_2^2, \dots, a_{n_2}^2) \tau^{-1} \cdots \\ \tau(a_1^r, a_2^r, \dots, a_{n_r}^r) \tau^{-1} \\ = (\tau(a_1^1), \tau(a_2^1), \dots, \tau(a_{n_1}^1)) (\tau(a_1^2), \tau(a_2^2), \dots, \tau(a_{n_2}^2)) \cdots \\ (\tau(a_1^r), \tau(a_2^r), \dots, \tau(a_{n_r}^r)) \text{ by Hungerford's Theorem I.6.3.}$$

Now τ is a bijection, so these cycles are also disjoint and hence the cycle type of $\tau\pi\tau^{-1}$ is the same as the cycle structure of π , as claimed.

Theorem 5.3.A (continued 2)

Theorem 5.3.A. In the symmetric group S_n , two elements are conjugate if and only if they have the same cycle structure.

Proof (continued). Now suppose π and ρ have the same cycle structure, say

$$\pi = (a_1^1, a_2^1, \dots, a_{n_1}^1)(a_1^2, a_2^2, \dots, a_{n_2}^2) \cdots (a_1^r, a_2^r, \dots, a_{n_r}^r)$$

and

$$\rho = (b_1^1, b_2^1, \dots, b_{n_1}^1)(b_1^2, b_2^2, \dots, b_{n_2}^2) \cdots (b_1^r, b_2^r, \dots, b_{n_r}^r).$$

Define τ mapping $\{1, 2, \dots, n\}$ to itself defined as $\tau(a_i^j) = b_i^j$ for $1 \le i \le n_i$ and $1 \le j \le r$. Next, π and ρ have the same number of fixed points so we can extend τ to map the fixed points of π in a bijective way to the fixed points of ρ . Since the cycles in π are disjoint and the cycles in ρ are disjoint, then τ is a bijection. That is, τ is a permutation of $\{1, 2, \ldots, n\}$ and so $\tau \in S_n$.

Theorem 5.3.A (continued 3)

Theorem 5.3.A. In the symmetric group S_n , two elements are conjugate if and only if they have the same cycle structure.

Proof (continued). Now

$$\tau \pi \tau^{-1} = (\tau(a_1^1), \tau(a_2^1), \dots, \tau(a_{n_1}^1))(\tau(a_1^2), \tau(a_2^2), \dots, \tau(a_{n_2}^2)) \cdots (\tau(a_1^r), \tau(a_2^r), \dots, \tau(a_{n_r}^r)) \text{ by Hungerford's Theorem I.6.3} = (b_1^1, b_2^1, \dots, b_{n_1}^1)(b_1^2, b_2^2, \dots, b_{n_2}^2) \cdots (b_1^r, b_2^r, \dots, b_{n_r}^r) = \rho.$$

That is, π and ρ are conjugates, as claimed.