Introduction to Knot Theory

Chapter 5. Algebraic Techniques

5.4. Equations in Groups and the Group of a Knot—Proofs of Theorems

Introduction to Knot Theory

March 5, 2021 1 / 10

Example 5.4.A

Example 5.4.A. Let G be a group and let arcs of the oriented graph in Figure 5.8 be labeled $x, y, z \in G$, as given. Then the other given labels on arcs are as presented.

Solution. We go through the crossings one at a time.

Introduction to Knot Theory

March 5, 2021 3 / 10

Example 5.4./

Example 5.4.A (continued 1)

Solution (continued). This is a right-handed crossing, so we need $(y)(z)(y)^{-1} = yzy^{-1}$ and hence the consistency condition is satisfied.

Example 5.4.A

Example 5.4.A (continued 2)

Solution (continued). This is a right-handed crossing, so we need $(y)(x)(y)^{-1} = yxy^{-1}$ and hence the consistency condition is satisfied.

Introduction to Knot Theory March 5, 2021 4 / 10 () Introduction to Knot Theory March 5, 2021 5 / 10

Example 5.4.A (continued 3)

Example 5.4.A (continued 4)

Solution (continued). This is a right-handed crossing, so we need $(x)(y)(x)^{-1} = xyx^{-1}$ and hence the consistency condition is satisfied.

Introduction to Knot Theory

March 5, 2021

Introduction to Knot Theory

 $yxy^{-1}yx^{-1}zxy^{-1}yx^{-1}y^{-1} = y(x(y^{-1}y)x^{-1})z(x(y^{-1}y)x^{-1})y^{-1} = yzy^{-1},$

March 5, 2021 7 / 10

Example 5.4.A (continued 5)

Solution (continued). This is a right-handed crossing, so we need $(z)(z^{-1}yz)(z)^{-1} = y$ and hence the consistency condition is satisfied.

 $(yxy^{-1})(yx^{-1}y^{-1}zyxy^{-1})(yxy^{-1})^{-1} = z$. We have

 $vxy^{-1}vx^{-1}v^{-1}zvxy^{-1}vx^{-1}v^{-1} =$ $(y(x(y^{-1}y)x^{-1})y^{-1})z(y(x(y^{-1}y)x^{-1})y^{-1}) = z$, and hence the consistency condition is satisfied.

Solution (continued). This is a right-handed crossing, so we need

Solution (continued). This is a left-handed crossing, so we need

 $(yxy^{-1})(yx^{-1}zxy^{-1})(yxy-1)^{-1} = yzy^{-1}$. We have

and hence the consistency condition is satisfied.

Introduction to Knot Theory

Example 5.4.A (continued 7)

 $(xyx^{-1})(xy^{-1}x^{-1}yx^{-1}zxy^{-1}xyx^{-1})(xyx^{-1})^{-1} = yx^{-1}zxy^{-1}$. We have

$$= (x(y(x^{-1}x)y^{-1})x^{-1})yx^{-1}zxy^{-1}(x(y(x^{-1}x)y^{-1})x^{-1}) = yx^{-1}zxy^{-1},$$

and hence the consistency condition is satisfied. \Box

Introduction to Knot Theory

March 5, 2021 10 / 10

