Introduction to Knot Theory

Chapter 5. Algebraic Techniques

5.4. Equations in Groups and the Group of a Knot—Proofs of Theorems

Table of contents

(1) Example 5.4.A

Example 5.4.A

Example 5.4.A. Let G be a group and let arcs of the oriented graph in Figure 5.8 be labeled $x, y, z \in G$, as given. Then the other given labels on arcs are as presented.

Solution. We go through the crossings one at a time.

Example 5.4.A

Example 5.4.A. Let G be a group and let arcs of the oriented graph in Figure 5.8 be labeled $x, y, z \in G$, as given. Then the other given labels on arcs are as presented.

Solution. We go through the crossings one at a time.

Example 5.4.A (continued 1)

Solution (continued). This is a right-handed crossing, so we need $(y)(z)(y)^{-1}=y z y^{-1}$ and hence the consistency condition is satisfied.

Example 5.4.A (continued 2)

Solution (continued). This is a right-handed crossing, so we need $(y)(x)(y)^{-1}=y x y^{-1}$ and hence the consistency condition is satisfied.

Example 5.4.A (continued 3)

Solution (continued). This is a right-handed crossing, so we need $(x)(y)(x)^{-1}=x y x^{-1}$ and hence the consistency condition is satisfied.

Example 5.4.A (continued 4)

Solution (continued). This is a left-handed crossing, so we need $\left(y x y^{-1}\right)\left(y x^{-1} z x y^{-1}\right)(y x y-1)^{-1}=y z y^{-1}$. We have $y x y^{-1} y x^{-1} z x y^{-1} y x^{-1} y^{-1}=y\left(x\left(y^{-1} y\right) x^{-1}\right) z\left(x\left(y^{-1} y\right) x^{-1}\right) y^{-1}=y z y^{-1}$, and hence the consistency condition is satisfied.

Example 5.4.A (continued 5)

Solution (continued). This is a right-handed crossing, so we need $(z)\left(z^{-1} y z\right)(z)^{-1}=y$ and hence the consistency condition is satisfied.

Example 5.4.A (continued 6)

Solution (continued). This is a right-handed crossing, so we need $\left(y x y^{-1}\right)\left(y x^{-1} y^{-1} z y x y^{-1}\right)\left(y x y^{-1}\right)^{-1}=z$. We have $y x y^{-1} y x^{-1} y^{-1} z y x y^{-1} y x^{-1} y^{-1}=$ $\left(y\left(x\left(y^{-1} y\right) x^{-1}\right) y^{-1}\right) z\left(y\left(x\left(y^{-1} y\right) x^{-1}\right) y^{-1}\right)=z$, and hence the consistency condition is satisfied.

Example 5.4.A (continued 7)

Solution (continued). This is a left-handed crossing, so we need $\left(x y x^{-1}\right)\left(x y^{-1} x^{-1} y x^{-1} z x y^{-1} x y x^{-1}\right)\left(x y x^{-1}\right)^{-1}=y x^{-1} z x y^{-1}$. We have

$$
x y x^{-1} x y^{-1} x^{-1} y x^{-1} z x y^{-1} x y x^{-1} x y^{-1} x^{-1}
$$

$$
=\left(x\left(y\left(x^{-1} x\right) y^{-1}\right) x^{-1}\right) y x^{-1} z x y^{-1}\left(x\left(y\left(x^{-1} x\right) y^{-1}\right) x^{-1}\right)=y x^{-1} z x y^{-1}
$$

and hence the consistency condition is satisfied.

