Introduction to Knot Theory

Chapter 6. Geometry, Algebra, and the Alexander Polynomial
6.2. Seifert Matrices and the Alexander Polynomial—Proofs of Theorems
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Corollary 6.2.2 (continued)

Corollary 6.2.2. The Alexander polynomial of a knot K satisfies
Ak(t) = t5 Ak (t71) for some i € Z.

Proof. We have that the Alexander polynomial satisfies

Ax(t) = det(V —tV?") =det((V — tV*)") by the Transpose Property
= det(V*' — tV) = det(tV — V") by the Scalar Multiplication
Property with r = —1 and n = 2g
= det(t(V — t71V?) = t?8det(V — v 1 V?) by the Scalar
Multiplication Property with r =t and n =2g
= t2A+K(tTY).

as claimed. ]
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Corollary 6.2.2

Corollary 6.2.2. The Alexander polynomial of a knot K satisfies
Ak(t) = t5 Ak (t71) for some i € Z.

Proof. This follows from properties of determinants. We recall some
relevant properties from my online Linear Algebra (MATH 2010) notes on
4.2. The Determinant of a Square Matrix (see Theorem 4.2.A. Properties
of the Determinant): For square matrix A and scalar r, det(A) = det(A?)
(the Transpose Property) and if a single row of A is multiplied by r to give
matrix B then det(B) = rdet(A) (The Scalar Multiplication Property).
Notice that the second property implies that det(rA) = r"det(A) where A
is nx n.
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Corollary 6.2.4

Corollary 6.2.4. If V7 and V5, are Seifert matrices associated with the
same knot, then the polynomials det(V4 — tV/) and det(V> — tV4) differ
by a multiple of +t*.

Proof. We know that the V4 and V5 are S-equivalent by Theorem 6.2.3
So we consider the effect on det(V; — tV]) and det(V2 — tV) by the
multiplication on the left by matrix M and on the right by matrix M?,
where M is as described in Note 6.2.A. Now M is a product of elementary
matrices which correspond to adding a multiple of one row to another.
The determinant of such an elementary matrix is the same as the identity
matrix (by, say, The Row-Addition Property of “Theorem 4.2.A. Properties
of the Determinant” in my Linear Algebra [MATH 2010] notes on 4.2. The
Determinant of a Square Matrix) and so is 1.
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Corollary 6.2.4 (continued 1) Corollary 6.2.4 (continued 2)

Proof (continued). Since the determinant of a product of matrices is the Proof (continued). So we have
product of the determinants (by “Theorem 4.4. The Multiplicative

Property” in the same online notes), then det(M) =1 and det(M?*) =1 * 0 *
(by The Transpose Property of Theorem 4.2.A in the online notes). So the Vi S %4 :
band moves has the effect: det(V{—t(V])") = det « 0 | —t "
¥ eee ok o%x 1 ¥ eee k%
Now for stabilization. One step of stabilization changes Seifert matrix V; * 0
to t
Vi= « 0 |- 0 0 —t 0
¥ oo ok % 1
0 --- 00 0 We expand along the last column (and observe that we have a
(2g +2) x (2g + 2) matrix).
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Corollary 6.2.4 (continued 3)
Proof (continued).
*
det( Vll . t( Vll)t) _ (_1)(2g+1)+(2g+2)det Vi — t\/lt
*
0 e 0 —t

= (—=1)(—t)(—1)@et D+t det(V; — tV{) expanding along the last row
= tdet(V] — tVf).
So one step of stabilization affects det(V4 — tV{) by a multiple of t.

So a sequence of band moves and stabilization will affect the determinant
of Vi — tV] by some power of t. The claim not follows. O
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