Introduction to Knot Theory

Chapter 6. Geometry, Algebra, and the Alexander Polynomial 6.2. Seifert Matrices and the Alexander Polynomial—Proofs of Theorems

Introduction to Knot Theory

February 26, 2021 1 / 8

Corollary 6.2.2

Corollary 6.2.2. The Alexander polynomial of a knot K satisfies $A_K(t) = t^{\pm i} A_K(t^{-1})$ for some $i \in \mathbb{Z}$.

Proof. This follows from properties of determinants. We recall some relevant properties from my online Linear Algebra (MATH 2010) notes on 4.2. The Determinant of a Square Matrix (see Theorem 4.2.A. Properties of the Determinant): For square matrix A and scalar r, $det(A) = det(A^t)$ (the Transpose Property) and if a single row of A is multiplied by r to give matrix B then det(B) = rdet(A) (The Scalar Multiplication Property). Notice that the second property implies that $det(rA) = r^n det(A)$ where A is $n \times n$.

> February 26, 2021 Introduction to Knot Theory

Corollary 6.2.2 (continued)

Corollary 6.2.2. The Alexander polynomial of a knot K satisfies $A_K(t) = t^{\pm i} A_K(t^{-1})$ for some $i \in \mathbb{Z}$.

Proof. We have that the Alexander polynomial satisfies

$$A_K(t) = \det(V - tV^t) = \det((V - tV^t)^t)$$
 by the Transpose Property
$$= \det(V^t - tV) = \det(tV - V^t)$$
 by the Scalar Multiplication Property with $r = -1$ and $n = 2g$
$$= \det(t(V - t^{-1}V^t)) = t^{2g}\det(V - v^{-1}V^t)$$
 by the Scalar Multiplication Property with $r = t$ and $n = 2g$
$$= t^{2g}A + K(t^{-1}).$$

as claimed.

Corollary 6.2.4

Corollary 6.2.4. If V_1 and V_2 are Seifert matrices associated with the same knot, then the polynomials $\det(V_1 - tV_1^t)$ and $\det(V_2 - tV_2^t)$ differ by a multiple of $\pm t^k$.

Proof. We know that the V_1 and V_2 are S-equivalent by Theorem 6.2.3 So we consider the effect on $\det(V_1 - tV_1^t)$ and $\det(V_2 - tV_2^t)$ by the multiplication on the left by matrix M and on the right by matrix M^t , where M is as described in Note 6.2.A. Now M is a product of elementary matrices which correspond to adding a multiple of one row to another. The determinant of such an elementary matrix is the same as the identity matrix (by, say, The Row-Addition Property of "Theorem 4.2.A. Properties of the Determinant" in my Linear Algebra [MATH 2010] notes on 4.2. The Determinant of a Square Matrix) and so is 1.

February 26, 2021 February 26, 2021 5 / 8 Introduction to Knot Theory Introduction to Knot Theory

Corollary 6.2.4 (continued 1)

Proof (continued). Since the determinant of a product of matrices is the product of the determinants (by "Theorem 4.4. The Multiplicative" Property' in the same online notes), then det(M) = 1 and $det(M^t) = 1$ (by The Transpose Property of Theorem 4.2.A in the online notes). So the band moves has the effect:

$$\det(M(V_1-tV_1^t)M^t)=\det(M)\det(V_1-tV_1^t)\det(M^t)=\det(V_1-tV_1^t).$$

Now for stabilization. One step of stabilization changes Seifert matrix V_1 to

$$V_1' = \left(egin{array}{ccccc} & * & 0 \ & V_1 & dots & dots \ & & * & 0 \ * & \cdots & * & * & 1 \ 0 & \cdots & 0 & 0 & 0 \end{array}
ight).$$

Introduction to Knot Theory

February 26, 2021

Corollary 6.2.4 (continued 3)

Proof (continued).

$$=(-1)(-t)(-1)^{(2g+1)+(2g+1)}\det(V_1-tV_1^t)$$
 expanding along the last row
$$=t\det(V_1-tV_1^t).$$

So one step of stabilization affects $\det(V_1 - tV_1^t)$ by a multiple of t.

So a sequence of band moves and stabilization will affect the determinant of $V_1 - tV_1^t$ by some power of t. The claim not follows.

Introduction to Knot Theory

February 26, 2021

Corollary 6.2.4 (continued 2)

Proof (continued). So we have

We expand along the last column (and observe that we have a $(2g + 2) \times (2g + 2)$ matrix).

> Introduction to Knot Theory February 26, 2021