Introduction to Knot Theory

Chapter 6. Geometry, Algebra, and the Alexander Polynomial 6.2. Seifert Matrices and the Alexander Polynomial—Proofs of Theorems

Table of contents

(1) Corollary 6.2.2
(2) Corollary 6.2.4

Corollary 6.2.2

Corollary 6.2.2. The Alexander polynomial of a knot K satisfies $A_{K}(t)=t^{ \pm i} A_{K}\left(t^{-1}\right)$ for some $i \in \mathbb{Z}$.

Proof. This follows from properties of determinants. We recall some relevant properties from my online Linear Algebra (MATH 2010) notes on 4.2. The Determinant of a Square Matrix (see Theorem 4.2.A. Properties of the Determinant): For square matrix A and $\operatorname{scalar} r, \operatorname{det}(A)=\operatorname{det}\left(A^{t}\right)$ (the Transpose Property) and if a single row of A is multiplied by r to give matrix B then $\operatorname{det}(B)=r \operatorname{det}(A)$ (The Scalar Multiplication Property). Notice that the second property implies that $\operatorname{det}(r A)=r^{n} \operatorname{det}(A)$ where A is $n \times n$.

Corollary 6.2.2

Corollary 6.2.2. The Alexander polynomial of a knot K satisfies $A_{K}(t)=t^{ \pm i} A_{K}\left(t^{-1}\right)$ for some $i \in \mathbb{Z}$.

Proof. This follows from properties of determinants. We recall some relevant properties from my online Linear Algebra (MATH 2010) notes on 4.2. The Determinant of a Square Matrix (see Theorem 4.2.A. Properties of the Determinant): For square matrix A and $\operatorname{scalar} r, \operatorname{det}(A)=\operatorname{det}\left(A^{t}\right)$ (the Transpose Property) and if a single row of A is multiplied by r to give matrix B then $\operatorname{det}(B)=r \operatorname{det}(A)$ (The Scalar Multiplication Property). Notice that the second property implies that $\operatorname{det}(r A)=r^{n} \operatorname{det}(A)$ where A is $n \times n$.

Corollary 6.2.2 (continued)

Corollary 6.2.2. The Alexander polynomial of a knot K satisfies $A_{K}(t)=t^{ \pm i} A_{K}\left(t^{-1}\right)$ for some $i \in \mathbb{Z}$.

Proof. We have that the Alexander polynomial satisfies

$$
\begin{aligned}
A_{K}(t)= & \operatorname{det}\left(V-t V^{t}\right)=\operatorname{det}\left(\left(V-t V^{t}\right)^{t}\right) \text { by the Transpose Property } \\
= & \operatorname{det}\left(V^{t}-t V\right)=\operatorname{det}\left(t V-V^{t}\right) \text { by the Scalar Multiplication } \\
& \quad \operatorname{Property} \text { with } r=-1 \text { and } n=2 g \\
= & \operatorname{det}\left(t\left(V-t^{-1} V^{t}\right)=t^{2 g} \operatorname{det}\left(V-v^{-1} V^{t}\right)\right. \text { by the Scalar } \\
& \text { Multiplication Property with } r=t \text { and } n=2 g \\
= & t^{2 g} A+K\left(t^{-1}\right) .
\end{aligned}
$$

as claimed.

Corollary 6.2.4

Corollary 6.2.4. If V_{1} and V_{2} are Seifert matrices associated with the same knot, then the polynomials $\operatorname{det}\left(V_{1}-t V_{1}^{t}\right)$ and $\operatorname{det}\left(V_{2}-t V_{2}^{t}\right) \operatorname{differ}$ by a multiple of $\pm t^{k}$.

Proof. We know that the V_{1} and V_{2} are S-equivalent by Theorem 6.2.3 So we consider the effect on $\operatorname{det}\left(V_{1}-t V_{1}^{t}\right)$ and $\operatorname{det}\left(V_{2}-t V_{2}^{t}\right)$ by the multiplication on the left by matrix M and on the right by matrix M^{t}, where M is as described in Note 6.2.A. Now M is a product of elementary matrices which correspond to adding a multiple of one row to another. The determinant of such an elementary matrix is the same as the identity matrix (by, say, The Row-Addition Property of "Theorem 4.2.A. Properties of the Determinant" in my Linear Algebra [MATH 2010] notes on 4.2. The Determinant of a Square Matrix) and so is 1.

Corollary 6.2.4

Corollary 6.2.4. If V_{1} and V_{2} are Seifert matrices associated with the same knot, then the polynomials $\operatorname{det}\left(V_{1}-t V_{1}^{t}\right)$ and $\operatorname{det}\left(V_{2}-t V_{2}^{t}\right) \operatorname{differ}$ by a multiple of $\pm t^{k}$.

Proof. We know that the V_{1} and V_{2} are S-equivalent by Theorem 6.2.3 So we consider the effect on $\operatorname{det}\left(V_{1}-t V_{1}^{t}\right)$ and $\operatorname{det}\left(V_{2}-t V_{2}^{t}\right)$ by the multiplication on the left by matrix M and on the right by matrix M^{t}, where M is as described in Note 6.2.A. Now M is a product of elementary matrices which correspond to adding a multiple of one row to another.
The determinant of such an elementary matrix is the same as the identity matrix (by, say, The Row-Addition Property of "Theorem 4.2.A. Properties of the Determinant" in my Linear Algebra [MATH 2010] notes on 4.2. The Determinant of a Square Matrix) and so is 1.

Corollary 6.2.4 (continued 1)

Proof (continued). Since the determinant of a product of matrices is the product of the determinants (by "Theorem 4.4. The Multiplicative Property" in the same online notes), then $\operatorname{det}(M)=1$ and $\operatorname{det}\left(M^{t}\right)=1$ (by The Transpose Property of Theorem 4.2.A in the online notes). So the band moves has the effect:

$$
\operatorname{det}\left(M\left(V_{1}-t V_{1}^{t}\right) M^{t}\right)=\operatorname{det}(M) \operatorname{det}\left(V_{1}-t V_{1}^{t}\right) \operatorname{det}\left(M^{t}\right)=\operatorname{det}\left(V_{1}-t V_{1}^{t}\right)
$$

Now for stabilization. One step of stabilization changes Seifert matrix V_{1} to

Corollary 6.2.4 (continued 1)

Proof (continued). Since the determinant of a product of matrices is the product of the determinants (by "Theorem 4.4. The Multiplicative Property" in the same online notes), then $\operatorname{det}(M)=1$ and $\operatorname{det}\left(M^{t}\right)=1$ (by The Transpose Property of Theorem 4.2.A in the online notes). So the band moves has the effect:

$$
\operatorname{det}\left(M\left(V_{1}-t V_{1}^{t}\right) M^{t}\right)=\operatorname{det}(M) \operatorname{det}\left(V_{1}-t V_{1}^{t}\right) \operatorname{det}\left(M^{t}\right)=\operatorname{det}\left(V_{1}-t V_{1}^{t}\right)
$$

Now for stabilization. One step of stabilization changes Seifert matrix V_{1} to

$$
V_{1}^{\prime}=\left(\begin{array}{ccccc}
& & & * & 0 \\
& V_{1} & & \vdots & \vdots \\
& & & * & 0 \\
* & \cdots & * & * & 1 \\
0 & \cdots & 0 & 0 & 0
\end{array}\right) .
$$

Corollary 6.2.4 (continued 2)

Proof (continued). So we have

We expand along the last column (and observe that we have a $(2 g+2) \times(2 g+2)$ matrix $)$.

Corollary 6.2.4 (continued 3)

Proof (continued).

$$
\operatorname{det}\left(V_{1}^{\prime}-t\left(V_{1}^{\prime}\right)^{t}\right)=(-1)^{(2 g+1)+(2 g+2)} \operatorname{det}\left(\begin{array}{cccc}
& & & * \\
& V_{1}-t V_{1}^{t} & & \vdots \\
& & & * \\
0 & \cdots & 0 & -t
\end{array}\right)
$$

$=(-1)(-t)(-1)^{(2 g+1)+(2 g+1)} \operatorname{det}\left(V_{1}-t V_{1}^{t}\right)$ expanding along the last row $=t \operatorname{det}\left(V_{1}-t V_{1}^{t}\right)$.

So one step of stabilization affects $\operatorname{det}\left(V_{1}-t V_{1}^{t}\right)$ by a multiple of t.
So a sequence of band moves and stabilization will affect the determinant of $V_{1}-t V_{1}^{t}$ by some power of t. The claim not follows.

Corollary 6.2.4 (continued 3)

Proof (continued).

$$
\begin{aligned}
& \quad \operatorname{det}\left(V_{1}^{\prime}-t\left(V_{1}^{\prime}\right)^{t}\right)=(-1)^{(2 g+1)+(2 g+2)} \operatorname{det}\left(\begin{array}{ccc}
& & \\
& V_{1}-t V_{1}^{t} & \vdots \\
& \ldots & 0 \\
0 & \cdots & -t
\end{array}\right) \\
& =(-1)(-t)(-1)^{(2 g+1)+(2 g+1)} \operatorname{det}\left(V_{1}-t V_{1}^{t}\right) \text { expanding along the last row } \\
& =t \operatorname{det}\left(V_{1}-t V_{1}^{t}\right) .
\end{aligned}
$$

So one step of stabilization affects $\operatorname{det}\left(V_{1}-t V_{1}^{t}\right)$ by a multiple of t.
So a sequence of band moves and stabilization will affect the determinant of $V_{1}-t V_{1}^{t}$ by some power of t. The claim not follows.

