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Chapter 6. Geometry, Algebra, and the Alexander Polynomial
6.2. Seifert Matrices and the Alexander Polynomial—Proofs of Theorems

() Introduction to Knot Theory February 26, 2021 1 / 8



Table of contents

1 Corollary 6.2.2

2 Corollary 6.2.4

() Introduction to Knot Theory February 26, 2021 2 / 8



Corollary 6.2.2

Corollary 6.2.2

Corollary 6.2.2. The Alexander polynomial of a knot K satisfies
AK (t) = t±iAK (t−1) for some i ∈ Z.

Proof. This follows from properties of determinants. We recall some
relevant properties from my online Linear Algebra (MATH 2010) notes on
4.2. The Determinant of a Square Matrix (see Theorem 4.2.A. Properties
of the Determinant): For square matrix A and scalar r , det(A) = det(At)
(the Transpose Property) and if a single row of A is multiplied by r to give
matrix B then det(B) = rdet(A) (The Scalar Multiplication Property).
Notice that the second property implies that det(rA) = rndet(A) where A
is n × n.
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Corollary 6.2.2

Corollary 6.2.2 (continued)

Corollary 6.2.2. The Alexander polynomial of a knot K satisfies
AK (t) = t±iAK (t−1) for some i ∈ Z.

Proof. We have that the Alexander polynomial satisfies

AK (t) = det(V − tV t) = det((V − tV t)t) by the Transpose Property

= det(V t − tV ) = det(tV − V t) by the Scalar Multiplication

Property with r = −1 and n = 2g

= det(t(V − t−1V t) = t2gdet(V − v−1V t) by the Scalar

Multiplication Property with r = t and n = 2g

= t2gA + K (t−1).

as claimed.
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Corollary 6.2.4

Corollary 6.2.4

Corollary 6.2.4. If V1 and V2 are Seifert matrices associated with the
same knot, then the polynomials det(V1 − tV t

1 ) and det(V2 − tV t
2 ) differ

by a multiple of ±tk .

Proof. We know that the V1 and V2 are S-equivalent by Theorem 6.2.3
So we consider the effect on det(V1 − tV t

1 ) and det(V2 − tV t
2 ) by the

multiplication on the left by matrix M and on the right by matrix Mt ,
where M is as described in Note 6.2.A. Now M is a product of elementary
matrices which correspond to adding a multiple of one row to another.
The determinant of such an elementary matrix is the same as the identity
matrix (by, say, The Row-Addition Property of “Theorem 4.2.A. Properties
of the Determinant” in my Linear Algebra [MATH 2010] notes on 4.2. The
Determinant of a Square Matrix) and so is 1.
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Corollary 6.2.4

Corollary 6.2.4 (continued 1)

Proof (continued). Since the determinant of a product of matrices is the
product of the determinants (by “Theorem 4.4. The Multiplicative
Property” in the same online notes), then det(M) = 1 and det(Mt) = 1
(by The Transpose Property of Theorem 4.2.A in the online notes). So the
band moves has the effect:

det(M(V1 − tV t
1 )Mt) = det(M)det(V1 − tV t

1 )det(Mt) = det(V1 − tV t
1 ).

Now for stabilization. One step of stabilization changes Seifert matrix V1

to

V ′
1 =


∗ 0

V1
...

...
∗ 0

∗ · · · ∗ ∗ 1
0 · · · 0 0 0

 .
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Corollary 6.2.4

Corollary 6.2.4 (continued 2)

Proof (continued). So we have

det(V ′
1−t(V ′

1)
t) = det




∗ 0

V1
...

...
∗ 0

∗ · · · ∗ ∗ 1
0 · · · 0 0 0

− t


∗ 0

V t
1

...
...

∗ 0
∗ · · · ∗ ∗ 0
0 · · · 0 1 0





= det


∗ 0

V1 − tV t
1

...
...

∗ 0
∗ · · · ∗ ∗ 1
0 · · · 0 −t 0


We expand along the last column (and observe that we have a
(2g + 2)× (2g + 2) matrix).
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Corollary 6.2.4

Corollary 6.2.4 (continued 3)

Proof (continued).

det(V ′
1 − t(V ′

1)
t) = (−1)(2g+1)+(2g+2)det


∗

V1 − tV t
1

...
∗

0 · · · 0 −t


= (−1)(−t)(−1)(2g+1)+(2g+1)det(V1 − tV t

1 ) expanding along the last row

= tdet(V1 − tV t
1 ).

So one step of stabilization affects det(V1 − tV t
1 ) by a multiple of t.

So a sequence of band moves and stabilization will affect the determinant
of V1 − tV t

1 by some power of t. The claim not follows.
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