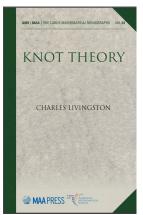
# Introduction to Knot Theory

### Chapter 6. Geometry, Algebra, and the Alexander Polynomial

6.3. The Signature of a Knot, and the other S-Equivalence Invariants—Proofs of Theorems



# Table of contents

Theorem 6.3.5

### Theorem 6.3.5

**Theorem 6.3.5.** For a knot K, the value of  $\sigma(K)$  does not depend on the choice of Seifert matrix, and is hence a well-define knot invariant.

**Proof.** Let V and W be Seifert matrices for knot K. Then by Theorem 6.2.3, V and W are S-equivalent. So we need to consider the two operations involved in the S-equivalence of matrices. The first operation (associated with bond moves in the Seifert surface) involves a matrix M, where  $\det(M)=1$ , such that  $W=MVM^t$ . So  $W=(MVM^t)^t=MV^tM^t$  and  $W=MVM^t+MV^tM^t=M(V+V^t)M^t$ . By Sylvesters Law of Inertia, the signatures of V and W are the same.

## Theorem 6.3.5

**Theorem 6.3.5.** For a knot K, the value of  $\sigma(K)$  does not depend on the choice of Seifert matrix, and is hence a well-define knot invariant.

**Proof.** Let V and W be Seifert matrices for knot K. Then by Theorem 6.2.3, V and W are S-equivalent. So we need to consider the two operations involved in the S-equivalence of matrices. The first operation (associated with bond moves in the Seifert surface) involves a matrix M, where det(M) = 1, such that  $W = MVM^t$ . So  $W = (MVM^t)^t = MV^tM^t$ and  $(W + W^t) = MVM^t + MV^tM^t = M(V + V^t)M^t$ . By Sylvesters Law of Inertia, the signatures of V and W are the same.

It is to be shown that the manipulation of the Seifert matrix associated with stabilization does not affect the signature of  $(V + V^t)$  in Exercise 6.3.5.

3 / 3

## Theorem 6.3.5

**Theorem 6.3.5.** For a knot K, the value of  $\sigma(K)$  does not depend on the choice of Seifert matrix, and is hence a well-define knot invariant.

**Proof.** Let V and W be Seifert matrices for knot K. Then by Theorem 6.2.3, V and W are S-equivalent. So we need to consider the two operations involved in the S-equivalence of matrices. The first operation (associated with bond moves in the Seifert surface) involves a matrix M, where  $\det(M)=1$ , such that  $W=MVM^t$ . So  $W=(MVM^t)^t=MV^tM^t$  and  $W=MVM^t+MV^tM^t=M(V+V^t)M^t$ . By Sylvesters Law of Inertia, the signatures of V and W are the same.

It is to be shown that the manipulation of the Seifert matrix associated with stabilization does not affect the signature of  $(V + V^t)$  in Exercise 6.3.5.

3 / 3