Introduction to Knot Theory

Chapter 6. Geometry, Algebra, and the Alexander Polynomial
6.3. The Signature of a Knot, and the other S-Equivalence Invariants—Proofs of Theorems

Table of contents

(1) Theorem 6.3.5

Theorem 6.3.5

Theorem 6.3.5. For a knot K, the value of $\sigma(K)$ does not depend on the choice of Seifert matrix, and is hence a well-define knot invariant.

Proof. Let V and W be Seifert matrices for knot K. Then by Theorem 6.2.3, V and W are S-equivalent. So we need to consider the two operations involved in the S-equivalence of matrices. The first operation (associated with bond moves in the Seifert surface) involves a matrix M, where $\operatorname{det}(M)=1$, such that $W=M V M^{t}$. So $W=\left(M V M^{t}\right)^{t}=M V^{t} M^{t}$ and $\left(W+W^{t}\right)=M V M^{t}+M V^{t} M^{t}=M\left(V+V^{t}\right) M^{t}$. By Sylvesters Law of Inertia, the signatures of V and W are the same.

Theorem 6.3.5

Theorem 6.3.5. For a knot K, the value of $\sigma(K)$ does not depend on the choice of Seifert matrix, and is hence a well-define knot invariant.

Proof. Let V and W be Seifert matrices for knot K. Then by Theorem 6.2.3, V and W are S-equivalent. So we need to consider the two operations involved in the S-equivalence of matrices. The first operation (associated with bond moves in the Seifert surface) involves a matrix M, where $\operatorname{det}(M)=1$, such that $W=M V M^{t}$. So $W=\left(M V M^{t}\right)^{t}=M V^{t} M^{t}$ and $\left(W+W^{t}\right)=M V M^{t}+M V^{t} M^{t}=M\left(V+V^{t}\right) M^{t}$. By Sylvesters Law of Inertia, the signatures of V and W are the same.

It is to be shown that the manipulation of the Seifert matrix associated with stabilization does not affect the signature of $\left(V+V^{t}\right)$ in Exercise 6.3.5.

Theorem 6.3.5

Theorem 6.3.5. For a knot K, the value of $\sigma(K)$ does not depend on the choice of Seifert matrix, and is hence a well-define knot invariant.

Proof. Let V and W be Seifert matrices for knot K. Then by Theorem 6.2.3, V and W are S-equivalent. So we need to consider the two operations involved in the S-equivalence of matrices. The first operation (associated with bond moves in the Seifert surface) involves a matrix M, where $\operatorname{det}(M)=1$, such that $W=M V M^{t}$. So $W=\left(M V M^{t}\right)^{t}=M V^{t} M^{t}$ and $\left(W+W^{t}\right)=M V M^{t}+M V^{t} M^{t}=M\left(V+V^{t}\right) M^{t}$. By Sylvesters Law of Inertia, the signatures of V and W are the same.

It is to be shown that the manipulation of the Seifert matrix associated with stabilization does not affect the signature of $\left(V+V^{t}\right)$ in Exercise 6.3.5.

