Introduction to Knot Theory

Chapter 8. Symmetries of Knots

8.4. Periodic Seifert Surfaces and Edmonds' Theorem—Proofs of Theorems

Table of contents

Theorem 8.4.4. Riemann-Hurwitz Formula

Theorem 8.4.4

Theorem 8.4.4. Riemann-Hurwitz Formula.

Let F be a genus g oriented surface which is equivariant with respect to a rotation about the z-axis of angle $(360/q)^{\circ}$, and let G be the quotient of F. If both F and G have one boundary component, then

$$\operatorname{genus}(F) = q(\operatorname{genus}(G)) + (q-1)(\Lambda-1)/2,$$

where Λ is the number of points of intersection of F (or G) with the z-axis.

Proof. Recall from Section 4.2 ("Classification of Surfaces") that for polyhedral surface S which is triangulated with F triangles, with a total of E edges and V vertices in the triangulation, then the Euler characteristic is given by $\chi(S) = F - E + V$. So we consider triangulations of surfaces F and G.

Theorem 8.4.4

Theorem 8.4.4. Riemann-Hurwitz Formula.

Let F be a genus g oriented surface which is equivariant with respect to a rotation about the z-axis of angle $(360/q)^{\circ}$, and let G be the quotient of F. If both F and G have one boundary component, then

$$genus(F) = q(genus(G)) + (q-1)(\Lambda-1)/2,$$

where Λ is the number of points of intersection of F (or G) with the z-axis.

Proof. Recall from Section 4.2 ("Classification of Surfaces") that for polyhedral surface S which is triangulated with F triangles, with a total of E edges and V vertices in the triangulation, then the Euler characteristic is given by $\chi(S) = F - E + V$. So we consider triangulations of surfaces F and G. A triangulation of quotient surface G can be picked so that the intersection points of G with the Z-axis are all vertices (this claim is based on geometric intuition). For this triangulation of G there is a corresponding triangulation of surface F.

Theorem 8.4.4

Theorem 8.4.4. Riemann-Hurwitz Formula.

Let F be a genus g oriented surface which is equivariant with respect to a rotation about the z-axis of angle $(360/q)^{\circ}$, and let G be the quotient of F. If both F and G have one boundary component, then

$$genus(F) = q(genus(G)) + (q-1)(\Lambda-1)/2,$$

where Λ is the number of points of intersection of F (or G) with the z-axis.

Proof. Recall from Section 4.2 ("Classification of Surfaces") that for polyhedral surface S which is triangulated with F triangles, with a total of E edges and V vertices in the triangulation, then the Euler characteristic is given by $\chi(S) = F - E + V$. So we consider triangulations of surfaces F and G. A triangulation of quotient surface G can be picked so that the intersection points of G with the Z-axis are all vertices (this claim is based on geometric intuition). For this triangulation of G there is a corresponding triangulation of surface F.

Theorem 8.4.4 (continued 1)

Proof (continued). Since F is equivariant and admits a rotation through $(360/q)^{\circ}$, then each triangle in the triangulation of quotient surface G determines q triangles in the triangulation of surface F. Similarly, each edge of quotient surface G determines q edges on surface F. Also, the vertices of quotient G which are not on the z-axis lift to q vertices in F. But the Λ vertices of quotient G which are on the z-axis each lift to a single vertex in the triangulation of surface F.

Denote the number of triangles, edges, and vertices of the triangulation of surface F as t_F , e_F , and v_F , respectively. Similar define t_G , e_G , and v_G for surface G. By the argument above, we have $t_F = q t_G$, $e_F = q e_G$, and $v_F = q v_G - (q-1)\Lambda$. Now by definition, the genus of a connected orientable surface S is genus(S) = $(2 - \chi(S) - B)/2$ where B is the number of boundary components of the surface. Hence,

$$\chi(F)=t_F-e_F+v_F=q\,t_G-q\,e_G+q\,v_G-(q-1)\Lambda$$
 and $\chi(G)=t_G-e_G+v_G$.

Theorem 8.4.4 (continued 1)

Proof (continued). Since F is equivariant and admits a rotation through $(360/q)^{\circ}$, then each triangle in the triangulation of quotient surface G determines q triangles in the triangulation of surface F. Similarly, each edge of quotient surface G determines q edges on surface F. Also, the vertices of quotient G which are not on the z-axis lift to q vertices in F. But the Λ vertices of quotient G which are on the z-axis each lift to a single vertex in the triangulation of surface F.

Denote the number of triangles, edges, and vertices of the triangulation of surface F as t_F , e_F , and v_F , respectively. Similar define t_G , e_G , and v_G for surface G. By the argument above, we have $t_F = q t_G$, $e_F = q e_G$, and $v_F = q v_G - (q-1)\Lambda$. Now by definition, the genus of a connected orientable surface S is genus(S) = $(2 - \chi(S) - B)/2$ where B is the number of boundary components of the surface. Hence,

$$\chi(F) = t_F - e_F + v_F = q t_G - q e_G + q v_G - (q - 1)\Lambda$$

and $\chi(G) = t_G - e_G + v_G$.

Theorem 8.4.4 (continued 2)

Proof (continued). Since surfaces F and G both have one boundary component by hypothesis, so

genus(F) =
$$\frac{2 - \chi(F) - (1)}{2} = \frac{2 - (q t_G - q e_G + q v_G - (q - 1)\Lambda) - 1}{2}$$

= $\frac{2 - q(t_G - e_G + v_G) + (q - 1)\Lambda - 1}{2}$
= $\frac{2 - q \chi(G) - (1)}{2} + \frac{(q - 1)\Lambda}{2}$
= $\frac{1}{2} - \frac{q \chi(G)}{2} + (\frac{q}{2} - \frac{q}{2}) + \frac{(q - 1)\Lambda}{2}$
= $\frac{2q - q \chi(G) - q}{2} - \frac{q}{2} + \frac{1}{2} + \frac{(q - 1)\Lambda}{2}$
= $q(genus(G)) + \frac{(q - 1)(\Lambda - 1)}{2}$, as claimed. \square