Introduction to Knot Theory

Chapter 8. Symmetries of Knots

8.5. Applications of the Murasugi and Edmonds Conditions—Proofs of Theorems

Introduction to Knot Theory

April 11, 2021 1

()

Introduction to Knot Theory

April 11 2021

0 / 5

Corollary 8.5.8

Corollary 8.5.8

Corollary 8.5.8. If a genus 2 knot K has period 3, then its Alexander polynomial satisfies $A_K(t) = \pm t^i \pmod{3}$.

Proof. We have g(K)=2 and q=3. By Exercise 8.4.2(a), Edmond's Conditions (Corollary 8.4.6) imply that the only possible values for the remaining parameters are $g_G=0$ and $\lambda=3$ (where g_G is the genus of the quotient knot J). Hence the quotient knot is trivial (its Seifert surface is a disk, since its genus is 0) and so has the trivial Alexander polynomial 1. By Edmond's Conditions (Corollary 8.4.6), we have $\Lambda \geq \lambda$ and $\Lambda = \lambda$ (mod 2), so the only possible values for λ are 1 or 3. Edmond's Conditions also implies that λ and q=3 are relatively prime, so we must have $\lambda=1$. Then by Murasugi's second condition (Theorem 8.3.2(2)),

$$A_k(t) = \pm t^i (A_J(t))^q (1 + t + t^2 + \dots + t^{\lambda-1})^{q-1} \pmod{p}$$
, or $A_K(t) = \pm t^i (1)^3 (1)^2 \pmod{3}$ or $A_K(t) = \pm t^i$, as claimed.

Corollary 8.5.7

Corollary 8.5.7

Corollary 8.5.7. If a genus 1 knot K has period 3, then its Alexander polynomial satisfies $A_K(t) = \pm t^i(t^2 + 2t + 1) \pmod{3}$.

Proof. With g(K)=1 and q=3, then Edmond's Condition (Corollary 8.4.6), $g(K)=q\,g_G+(q-1)(\Lambda-1)/2$ implies that $1=3g_G+2(\Lambda-1)/2=3g_G+\Lambda-1$ and so we must have $g_G=0$ and $\Lambda=2$. Now the linking number λ of the quotient knot satisfies $\lambda\leq\Lambda$, $\Lambda=\lambda$ (mod 2) and λ is relatively prime with q=3 by Edmond's Conditions (Corollary 8.4.6), we we must have $\lambda=2$. By Theorem 6.2.1, a genus 1 knot has an Alexander polynomial of degree at most 2, so with p=q=3 and $\lambda=2$ in the Murasugi Conditions (Theorem 8.3.2(2)), we must have $A_K(t)=\pm t^i(A_J(t))^q(1+t)^2$ (mod 3), or $A_K(t)=\pm t^i(t^2+2t+1)$ (mod 3), as claimed. Also notice that $A_J(t)$ must be a constant and hence of degree 0.

Corollary 8.5.

Corollary 8.5.9

Corollary 8.5.9. If a nontrivial knot K is of period 5 and $g(K) \leq 3$, then the Alexander polynomial of K satisfies $A_K(t) = \pm t^i(t^4 - t^3 + t^2 - t + 1)$ (mod 5), and genus(K) = 2.

Proof. We have q=5 and $g(K) \leq 3$. Edmond's Conditions (Corollary 8.4.6) imply that $g(K)=q\,g_G+(q-1)(\Lambda-1)/2$, or $g(K)=5g_G+4(\Lambda-1)$. There are no solutions for g(K)=1 nor for g(K)=3. For g(K)=2, we have the only solution when $g_G=0$ and $\Lambda=2$. Edmond's Conditions also imply that $\Lambda\geq\lambda$, $\Lambda=\lambda$ (mod 2), and λ is relatively prime to q=5. So we must have $\lambda=2$. Since $g_G=0$ is the genus of the quotient knot J, the the quotient knot J is trivial (since it bounds a genus 0 Seifert surface) and so the Alexander polynomial of J is trivial, $A_J(t)=1$. Then by Murasugi's second condition (Theorem 8.3.2(2)), $A_K(t)=\pm t^i(A_J(t))^q(1+t+t^2+\cdots+t^{\lambda-1})^(q-1)$ (mod p), or $A_K(t)=\pm t^i(1)^5(1+t)^4$ (mod 5) or $A_K(t)=\pm t^i(t^4+4t^3+6t^2+4t+1)$ (mod 5) or $A_K(t)=\pm t^i(t^4-t^3+t^2-t+1)$ (mod 5), as claimed.