
Introduction to Knot Theory

April 11, 2021

Chapter 8. Symmetries of Knots
8.5. Applications of the Murasugi and Edmonds Conditions—Proofs of

Theorems
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Corollary 8.5.7

Corollary 8.5.7

Corollary 8.5.7. If a genus 1 knot K has period 3, then its Alexander
polynomial satisfies AK (t) = ±t i (t2 + 2t + 1) (mod 3).

Proof. With g(K ) = 1 and q = 3, then Edmond’s Condition (Corollary
8.4.6), g(K ) = q gG + (q − 1)(Λ− 1)/2 implies that
1 = 3gG + 2(Λ− 1)/2 = 3gG + Λ− 1 and so we must have gG = 0 and
Λ = 2. Now the linking number λ of the quotient knot satisfies λ ≤ Λ,
Λ = λ (mod 2) and λ is relatively prime with q = 3 by Edmond’s
Conditions (Corollary 8.4.6), we we must have λ = 2.

By Theorem 6.2.1,
a genus 1 knot has an Alexander polynomial of degree at most 2, so with
p = q = 3 and λ = 2 in the Murasugi Conditions (Theorem 8.3.2(2)), we
must have AK (t) = ±t i (AJ(t))

q(1 + t)2 (mod 3), or
AK (t) = ±t i (t2 + 2t + 1) (mod 3), as claimed. Also notice that AJ(t)
must be a constant and hence of degree 0.
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Corollary 8.5.8

Corollary 8.5.8

Corollary 8.5.8. If a genus 2 knot K has period 3, then its Alexander
polynomial satisfies AK (t) = ±t i (mod 3).

Proof. We have g(K ) = 2 and q = 3. By Exercise 8.4.2(a), Edmond’s
Conditions (Corollary 8.4.6) imply that the only possible values for the
remaining parameters are gG = 0 and λ = 3 (where gG is the genus of the
quotient knot J). Hence the quotient knot is trivial (its Seifert surface is a
disk, since its genus is 0) and so has the trivial Alexander polynomial 1.

By Edmond’s Conditions (Corollary 8.4.6), we have Λ ≥ λ and Λ = λ
(mod 2), so the only possible values for λ are 1 or 3. Edmond’s Conditions
also implies that λ and q = 3 are relatively prime, so we must have λ = 1.
Then by Murasugi’s second condition (Theorem 8.3.2(2)),
Ak(t) = ±t i (AJ(t))

q(1 + t + t2 + · · ·+ tλ−1)q−1 (mod p), or
AK (t) = ±t i (1)3(1)2 (mod 3) or AK (t) = ±t i , as claimed.
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Corollary 8.5.8. If a genus 2 knot K has period 3, then its Alexander
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Corollary 8.5.9

Corollary 8.5.9

Corollary 8.5.9. If a nontrivial knot K is of period 5 and g(K ) ≤ 3, then
the Alexander polynomial of K satisfies AK (t) = ±t i (t4 − t3 + t2 − t + 1)
(mod 5), and genus(K ) = 2.

Proof. We have q = 5 and g(K ) ≤ 3. Edmond’s Conditions (Corollary
8.4.6) imply that g(K ) = q gG + (q − 1)(Λ− 1)/2, or
g(K ) = 5gG + 4(Λ− 1). There are no solutions for g(K ) = 1 nor for
g(K ) = 3. For g(K ) = 2, we have the only solution when gG = 0 and
Λ = 2. Edmond’s Conditions also imply that Λ ≥ λ, Λ = λ (mod 2), and λ
is relatively prime to q = 5. So we must have λ = 2.

Since gG = 0 is the
genus of the quotient knot J, the the quotient knot J is trivial (since it
bounds a genus 0 Seifert surface) and so the Alexander polynomial of J is
trivial, AJ(t) = 1. Then by Murasugi’s second condition (Theorem
8.3.2(2)), Ak(t) = ±t i (AJ(t))

q(1+ t + t2 + · · ·+ tλ−1)(q− 1) (mod p), or
AK (t) = ±t i (1)5(1 + t)4 (mod 5) or AK (t) = ±t i (t4 + 4t3 + 6t2 + 4t + 1)
(mod 5) or AK (t) = ±t i (t4 − t3 + t2 − t + 1) (mod 5), as claimed.
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