Introduction to Knot Theory

Chapter 8. Symmetries of Knots
8.5. Applications of the Murasugi and Edmonds Conditions—Proofs of
Theorems
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Corollary 8.5.7

Corollary 8.5.7. If a genus 1 knot K has period 3, then its Alexander
polynomial satisfies Ax(t) = +t/(t?> 42t 4 1) (mod 3).
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Corollary 8.5.7

Corollary 8.5.7. If a genus 1 knot K has period 3, then its Alexander
polynomial satisfies Ak (t) = +t/(t> + 2t + 1) (mod 3).

Proof. With g(K) =1 and g = 3, then Edmond’s Condition (Corollary
8.4.6), g(K) =qgc +(q—1)(A—1)/2 implies that
1=3g6+2(A—-1)/2=3gc + A\ —1 and so we must have g = 0 and
A = 2. Now the linking number X of the quotient knot satisfies A < A,
A = X (mod 2) and X is relatively prime with ¢ = 3 by Edmond’s
Conditions (Corollary 8.4.6), we we must have A = 2.
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Corollary 8.5.7

Corollary 8.5.7. If a genus 1 knot K has period 3, then its Alexander
polynomial satisfies Ak (t) = +t/(t> + 2t + 1) (mod 3).

Proof. With g(K) =1 and g = 3, then Edmond’s Condition (Corollary
8.4.6), g(K) =qgc +(q—1)(A—1)/2 implies that
1=3g6+2(A—-1)/2=3gc + A\ —1 and so we must have g = 0 and
A = 2. Now the linking number X of the quotient knot satisfies A < A,

A = X (mod 2) and X is relatively prime with ¢ = 3 by Edmond’s
Conditions (Corollary 8.4.6), we we must have A = 2. By Theorem 6.2.1,
a genus 1 knot has an Alexander polynomial of degree at most 2, so with
p=¢g=23and A =2 in the Murasugi Conditions (Theorem 8.3.2(2)), we
must have Ak (t) = +t'(A,(t))9(1 + t)? (mod 3), or

Ax(t) = £t/(t? + 2t + 1) (mod 3), as claimed. Also notice that Aj(t)
must be a constant and hence of degree 0. O
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Corollary 8.5.8

Corollary 8.5.8. If a genus 2 knot K has period 3, then its Alexander
polynomial satisfies Ak (t) = +t' (mod 3).
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Corollary 8.5.8

Corollary 8.5.8. If a genus 2 knot K has period 3, then its Alexander
polynomial satisfies Ak (t) = +t' (mod 3).

Proof. We have g(K) =2 and g = 3. By Exercise 8.4.2(a), Edmond’s
Conditions (Corollary 8.4.6) imply that the only possible values for the
remaining parameters are g = 0 and A\ = 3 (where g is the genus of the
quotient knot J). Hence the quotient knot is trivial (its Seifert surface is a
disk, since its genus is 0) and so has the trivial Alexander polynomial 1.
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Corollary 8.5.8

Corollary 8.5.8. If a genus 2 knot K has period 3, then its Alexander
polynomial satisfies Ak (t) = +t' (mod 3).

Proof. We have g(K) =2 and g = 3. By Exercise 8.4.2(a), Edmond’s
Conditions (Corollary 8.4.6) imply that the only possible values for the
remaining parameters are g = 0 and A\ = 3 (where g is the genus of the
quotient knot J). Hence the quotient knot is trivial (its Seifert surface is a
disk, since its genus is 0) and so has the trivial Alexander polynomial 1.
By Edmond’s Conditions (Corollary 8.4.6), we have A > X and A =\
(mod 2), so the only possible values for A are 1 or 3. Edmond’s Conditions
also implies that A and g = 3 are relatively prime, so we must have A = 1.
Then by Murasugi's second condition (Theorem 8.3.2(2)),

Ae(t) = £t (A;()I(L+t+ 2+ -+ t271)971 (mod p), or

Ak(t) = £t/(1)3(1)? (mod 3) or Ax(t) = £t', as claimed. O
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Corollary 8.5.9

Corollary 8.5.9

Corollary 8.5.9. If a nontrivial knot K is of period 5 and g(K) < 3, then
the Alexander polynomial of K satisfies Ax(t) = +t/(t* — 3+t — t 4+ 1)
(mod 5), and genus(K) = 2.
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Corollary 8.5.9

Corollary 8.5.9. If a nontrivial knot K is of period 5 and g(K) < 3, then
the Alexander polynomial of K satisfies Ax(t) = +t/(t* — 3+t — t 4+ 1)
(mod 5), and genus(K) = 2.

Proof. We have g =5 and g(K) < 3. Edmond’s Conditions (Corollary
8.4.6) imply that g(K) = qgc + (g — 1)(A —1)/2, or

g(K) =5g¢ + 4(A — 1). There are no solutions for g(K) = 1 nor for
g(K) = 3. For g(K) = 2, we have the only solution when g = 0 and

A = 2. Edmond's Conditions also imply that A > XA, A = A (mod 2), and A
is relatively prime to ¢ = 5. So we must have \ = 2.
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Corollary 8.5.9

Corollary 8.5.9. If a nontrivial knot K is of period 5 and g(K) < 3, then
the Alexander polynomial of K satisfies Ax(t) = +t/(t* — 3+t — t 4+ 1)
(mod 5), and genus(K) = 2.

Proof. We have g =5 and g(K) < 3. Edmond’s Conditions (Corollary
8.4.6) imply that g(K) = qgc + (g — 1)(A —1)/2, or

g(K) =5g¢ + 4(A — 1). There are no solutions for g(K) = 1 nor for
g(K) = 3. For g(K) = 2, we have the only solution when g = 0 and

A = 2. Edmond's Conditions also imply that A > XA, A = A (mod 2), and A
is relatively prime to ¢ = 5. So we must have A = 2. Since gg = 0 is the
genus of the quotient knot J, the the quotient knot J is trivial (since it
bounds a genus 0 Seifert surface) and so the Alexander polynomial of J is
trivial, Ay(t) = 1. Then by Murasugi's second condition (Theorem
8.3.2(2)), Ax(t) = £t/ (A())9(1+t+ t2+---+ t* 1) g—1) (mod p), or
Ax(t) = £t/(1)°(1+ t)* (mod 5) or Ak(t) = £t/(t* + 4t3 + 61> + 4t + 1)
(mod 5) or Ax(t) = £t/(t* — t3 +t> — t + 1) (mod 5), as claimed. [
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