Introduction to Knot Theory

Chapter 8. Symmetries of Knots

8.5. Applications of the Murasugi and Edmonds Conditions—Proofs of Theorems

Table of contents

(1) Corollary 8.5.7
(2) Corollary 8.5.8
(3) Corollary 8.5.9

Corollary 8.5.7

Corollary 8.5.7. If a genus 1 knot K has period 3 , then its Alexander polynomial satisfies $A_{K}(t)= \pm t^{i}\left(t^{2}+2 t+1\right)(\bmod 3)$.

Proof. With $g(K)=1$ and $q=3$, then Edmond's Condition (Corollary 8.4.6), $g(K)=q g_{G}+(q-1)(\Lambda-1) / 2$ implies that $1=3 g_{G}+2(\Lambda-1) / 2=3 g_{G}+\Lambda-1$ and so we must have $g_{G}=0$ and $\Lambda=2$. Now the linking number λ of the quotient knot satisfies $\lambda \leq \Lambda$, $\Lambda=\lambda(\bmod 2)$ and λ is relatively prime with $q=3$ by Edmond's Conditions (Corollary 8.4.6), we we must have $\lambda=2$.

Corollary 8.5.7

Corollary 8.5.7. If a genus 1 knot K has period 3 , then its Alexander polynomial satisfies $A_{K}(t)= \pm t^{i}\left(t^{2}+2 t+1\right)(\bmod 3)$.

Proof. With $g(K)=1$ and $q=3$, then Edmond's Condition (Corollary 8.4.6), $g(K)=q g_{G}+(q-1)(\Lambda-1) / 2$ implies that $1=3 g_{G}+2(\Lambda-1) / 2=3 g_{G}+\Lambda-1$ and so we must have $g_{G}=0$ and $\Lambda=2$. Now the linking number λ of the quotient knot satisfies $\lambda \leq \Lambda$, $\Lambda=\lambda(\bmod 2)$ and λ is relatively prime with $q=3$ by Edmond's Conditions (Corollary 8.4.6), we we must have $\lambda=2$. By Theorem 6.2.1, a genus 1 knot has an Alexander polynomial of degree at most 2, so with $p=q=3$ and $\lambda=2$ in the Murasugi Conditions (Theorem 8.3.2(2)), we must have $A_{K}(t)= \pm t^{i}\left(A_{J}(t)\right)^{q}(1+t)^{2}(\bmod 3)$, or $A_{K}(t)= \pm t^{i}\left(t^{2}+2 t+1\right)(\bmod 3)$, as claimed. Also notice that $A_{J}(t)$ must be a constant and hence of degree 0 .

Corollary 8.5.7

Corollary 8.5.7. If a genus 1 knot K has period 3 , then its Alexander polynomial satisfies $A_{K}(t)= \pm t^{i}\left(t^{2}+2 t+1\right)(\bmod 3)$.

Proof. With $g(K)=1$ and $q=3$, then Edmond's Condition (Corollary 8.4.6), $g(K)=q g_{G}+(q-1)(\Lambda-1) / 2$ implies that $1=3 g_{G}+2(\Lambda-1) / 2=3 g_{G}+\Lambda-1$ and so we must have $g_{G}=0$ and $\Lambda=2$. Now the linking number λ of the quotient knot satisfies $\lambda \leq \Lambda$, $\Lambda=\lambda(\bmod 2)$ and λ is relatively prime with $q=3$ by Edmond's Conditions (Corollary 8.4.6), we we must have $\lambda=2$. By Theorem 6.2.1, a genus 1 knot has an Alexander polynomial of degree at most 2, so with $p=q=3$ and $\lambda=2$ in the Murasugi Conditions (Theorem 8.3.2(2)), we must have $A_{K}(t)= \pm t^{i}\left(A_{J}(t)\right)^{q}(1+t)^{2}(\bmod 3)$, or $A_{K}(t)= \pm t^{i}\left(t^{2}+2 t+1\right)(\bmod 3)$, as claimed. Also notice that $A_{J}(t)$ must be a constant and hence of degree 0 .

Corollary 8.5.8

Corollary 8.5.8. If a genus 2 knot K has period 3, then its Alexander polynomial satisfies $A_{K}(t)= \pm t^{i}(\bmod 3)$.

Proof. We have $g(K)=2$ and $q=3$. By Exercise 8.4.2(a), Edmond's Conditions (Corollary 8.4.6) imply that the only possible values for the remaining parameters are $g_{G}=0$ and $\lambda=3$ (where g_{G} is the genus of the quotient knot J). Hence the quotient knot is trivial (its Seifert surface is a disk, since its genus is 0) and so has the trivial Alexander polynomial 1.

Corollary 8.5.8

Corollary 8.5.8. If a genus 2 knot K has period 3, then its Alexander polynomial satisfies $A_{K}(t)= \pm t^{i}(\bmod 3)$.

Proof. We have $g(K)=2$ and $q=3$. By Exercise 8.4.2(a), Edmond's Conditions (Corollary 8.4.6) imply that the only possible values for the remaining parameters are $g_{G}=0$ and $\lambda=3$ (where g_{G} is the genus of the quotient knot J). Hence the quotient knot is trivial (its Seifert surface is a disk, since its genus is 0) and so has the trivial Alexander polynomial 1.
By Edmond's Conditions (Corollary 8.4.6), we have $\Lambda \geq \lambda$ and $\Lambda=\lambda$
(mod 2), so the only possible values for λ are 1 or 3 . Edmond's Conditions also implies that λ and $q=3$ are relatively prime, so we must have $\lambda=1$. Then by Murasugi's second condition (Theorem 8.3.2(2)),
$A_{k}(t)= \pm t^{i}\left(A_{J}(t)\right)^{q}\left(1+t+t^{2}+\cdots+t^{\lambda-1}\right)^{q-1}(\bmod p)$, or
$A_{K}(t)= \pm t^{i}(1)^{3}(1)^{2}(\bmod 3)$ or $A_{K}(t)= \pm t^{i}$, as claimed.

Corollary 8.5.8

Corollary 8.5.8. If a genus 2 knot K has period 3, then its Alexander polynomial satisfies $A_{K}(t)= \pm t^{i}(\bmod 3)$.

Proof. We have $g(K)=2$ and $q=3$. By Exercise 8.4.2(a), Edmond's Conditions (Corollary 8.4.6) imply that the only possible values for the remaining parameters are $g_{G}=0$ and $\lambda=3$ (where g_{G} is the genus of the quotient knot J). Hence the quotient knot is trivial (its Seifert surface is a disk, since its genus is 0) and so has the trivial Alexander polynomial 1. By Edmond's Conditions (Corollary 8.4.6), we have $\Lambda \geq \lambda$ and $\Lambda=\lambda$ (mod 2), so the only possible values for λ are 1 or 3 . Edmond's Conditions also implies that λ and $q=3$ are relatively prime, so we must have $\lambda=1$. Then by Murasugi's second condition (Theorem 8.3.2(2)), $A_{k}(t)= \pm t^{i}\left(A_{J}(t)\right)^{q}\left(1+t+t^{2}+\cdots+t^{\lambda-1}\right)^{q-1}(\bmod p)$, or $A_{K}(t)= \pm t^{i}(1)^{3}(1)^{2}(\bmod 3)$ or $A_{K}(t)= \pm t^{i}$, as claimed.

Corollary 8.5.9

Corollary 8.5.9. If a nontrivial knot K is of period 5 and $g(K) \leq 3$, then the Alexander polynomial of K satisfies $A_{K}(t)= \pm t^{i}\left(t^{4}-t^{3}+t^{2}-t+1\right)$ $(\bmod 5)$, and $\operatorname{genus}(K)=2$.

Proof. We have $q=5$ and $g(K) \leq 3$. Edmond's Conditions (Corollary 8.4.6) imply that $g(K)=q g_{G}+(q-1)(\Lambda-1) / 2$, or $g(K)=5 g_{G}+4(\Lambda-1)$. There are no solutions for $g(K)=1$ nor for $g(K)=3$. For $g(K)=2$, we have the only solution when $g_{G}=0$ and $\Lambda=2$. Edmond's Conditions also imply that $\Lambda \geq \lambda, \Lambda=\lambda(\bmod 2)$, and λ is relatively prime to $q=5$. So we must have $\lambda=2$.

Corollary 8.5.9

Corollary 8.5.9. If a nontrivial knot K is of period 5 and $g(K) \leq 3$, then the Alexander polynomial of K satisfies $A_{K}(t)= \pm t^{i}\left(t^{4}-t^{3}+t^{2}-t+1\right)$ $(\bmod 5)$, and $\operatorname{genus}(K)=2$.

Proof. We have $q=5$ and $g(K) \leq 3$. Edmond's Conditions (Corollary 8.4.6) imply that $g(K)=q g_{G}+(q-1)(\Lambda-1) / 2$, or $g(K)=5 g_{G}+4(\Lambda-1)$. There are no solutions for $g(K)=1$ nor for $g(K)=3$. For $g(K)=2$, we have the only solution when $g_{G}=0$ and $\Lambda=2$. Edmond's Conditions also imply that $\Lambda \geq \lambda, \Lambda=\lambda(\bmod 2)$, and λ is relatively prime to $q=5$. So we must have $\lambda=2$. Since $g_{G}=0$ is the genus of the quotient knot J, the the quotient knot J is trivial (since it bounds a genus 0 Seifert surface) and so the Alexander polynomial of J is trivial, $A_{J}(t)=1$. Then by Murasugi's second condition (Theorem 8.3.2(2)), $A_{k}(t)= \pm t^{i}\left(A_{J}(t)\right)^{q}\left(1+t+t^{2}+\cdots+t^{\lambda-1}\right)(q-1)(\bmod p)$, or $A_{K}(t)= \pm t^{i}(1)^{5}(1+t)^{4}(\bmod 5)$ or $A_{K}(t)= \pm t^{i}\left(t^{4}+4 t^{3}+6 t^{2}+4 t+1\right)$ $(\bmod 5)$ or $A_{K}(t)= \pm t^{i}\left(t^{4}-t^{3}+t^{2}-t+1\right)(\bmod 5)$, as claimed.

Corollary 8.5.9

Corollary 8.5.9. If a nontrivial knot K is of period 5 and $g(K) \leq 3$, then the Alexander polynomial of K satisfies $A_{K}(t)= \pm t^{i}\left(t^{4}-t^{3}+t^{2}-t+1\right)$ $(\bmod 5)$, and $\operatorname{genus}(K)=2$.

Proof. We have $q=5$ and $g(K) \leq 3$. Edmond's Conditions (Corollary 8.4.6) imply that $g(K)=q g_{G}+(q-1)(\Lambda-1) / 2$, or $g(K)=5 g_{G}+4(\Lambda-1)$. There are no solutions for $g(K)=1$ nor for $g(K)=3$. For $g(K)=2$, we have the only solution when $g_{G}=0$ and $\Lambda=2$. Edmond's Conditions also imply that $\Lambda \geq \lambda, \Lambda=\lambda(\bmod 2)$, and λ is relatively prime to $q=5$. So we must have $\lambda=2$. Since $g_{G}=0$ is the genus of the quotient knot J, the the quotient knot J is trivial (since it bounds a genus 0 Seifert surface) and so the Alexander polynomial of J is trivial, $A_{J}(t)=1$. Then by Murasugi's second condition (Theorem 8.3.2(2)), $A_{k}(t)= \pm t^{i}\left(A_{J}(t)\right)^{q}\left(1+t+t^{2}+\cdots+t^{\lambda-1}\right)^{(q-1)(\bmod p) \text {, or }, ~}$ $A_{K}(t)= \pm t^{i}(1)^{5}(1+t)^{4}(\bmod 5)$ or $A_{K}(t)= \pm t^{i}\left(t^{4}+4 t^{3}+6 t^{2}+4 t+1\right)$ $(\bmod 5)$ or $A_{K}(t)= \pm t^{i}\left(t^{4}-t^{3}+t^{2}-t+1\right)(\bmod 5)$, as claimed.

