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Chapter 9. High-Dimensional Knot Theory
9.4. Slice Knots—Proofs of Theorems
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Corollary 9.4.3

Corollary 9.4.3

Corollary 9.4.3. The Alexander polynomial of a slice knot can be factored
as ±tk f (t)f (t−1) for some integer polynomial f and integer k.

Proof. The Alexander polynomial is det(V − tV t), where V is a Seifert
matrix for the knot, by Theorem 6.2.1. By Theorem 9.4.2, there is an
invertible, determinant 1, integer matrix M such that MVMt if of the form(

0 B
C D

)
. So the Alexander polynomial is

det(V − tV t) = det(M) det(V − tV t) det(Mt)

since det(M) = det(Mt) = 1

= det(M(V − tV t)Mt) by the Multiplicative

Property of Determinants

= det(MVMt − tMV tMt).
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Corollary 9.4.3

Corollary 9.4.3 (continued 1)

Proof (continued). Now

MVMt =

(
0 B
C D

)
implies (MVMt)t = MV tMt =

(
0 C t

Bt Dt

)
.

So the Alexander polynomial is

det(MVMt − tMV tMt) = det

((
0 B
C D

)
− t

(
0 C t

Bt Dt

))

= det

(
0 B − tC t

C − tBt D − tDt

)
.

Now, in general, for partitioned square matrix A =

(
A11 A12

A21 A22

)
, where

A11 is square and nonsingular, we have

det(A) = det(A11) det(A22 − A21A
−1
11 A12) . . .
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Corollary 9.4.3

Corollary 9.4.3 (continued 2)

Proof (continued).

. . . det(A) = det(A11) det(A22 − A21A
−1
11 A12)

(see Theorem 3.4.3 in my online notes for Theory of Matrices [MATH
5090] on Section 3.4. More on Partitioned Square Matrices: The Schur
Complement). In fact, we can use a sequence of row interchanges and
column interchanges to show that if A22 is nonsingular then

det(A) = det(A22) det(A11 − A12A
−1
22 A21)

(see Theorem 2.5.C(2) in my online notes for Applied Multivariate
Statistical Analysis [STAT 5730] on Section 2.5. Partitioned Matrices).
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Corollary 9.4.3

Corollary 9.4.3 (continued 3)

Corollary 9.4.3. The Alexander polynomial of a slice knot can be factored
as ±tk f (t)f (t−1) for some integer polynomial f and integer k.

Proof (continued). Notice that D − tDt is nonsingular (or else the
Alexander polynomial would be simply 0), so

det(D − tDt) det(0− (B − tC t)(D − tDt)−1(C − tBt))

= det(D − tDt) det(−(B − tC t)(D − tDt)−1(C − tBt))

= −det(D − tDt) det(B − tC t) det(D − tDt)−1) det(C − tBt)

= −det(B−tC t) det(C−tBt) because det((D−tDt)−1) = 1/det(D−tDt)

= −det(B − tC t) det((C − tBt)t) = −det(B − tC t) det(C t − tB)

= −det(B − tC t) det((−t)(B − (t/t)C t)

= ±tkdet(B − tC t) det(B − (1/t)C t)

for some k. So we can take f (t) = det(B − tC t) and the claim holds.
() Introduction to Knot Theory May 2, 2021 6 / 10



Corollary 9.4.4

Corollary 9.4.4

Corollary 9.4.4. If a knot is slice then its signature (and all its
ω-signatures) are 0.

Proof. Recall that the signature of a matrix is is the number of positive
entries minus the number of negative entries on the diagonal, and for a
Seifert matrix V of a knot K , the matrix V + V t is symmetric and its
signature is the signature of knot K , denoted σ(K ). Livingston only
considers the real case, declaring “a proof for the complex signatures [that
is, the ω-signatures] is similar.”

By Theorem 9.4.2, there is an invertible, determinant 1, integer matrix M

such that MVMt is of the form

(
0 B
C D

)
. Also,

(MVMt)t = MV tMt =

(
0 C t

Bt Dt

)
.

() Introduction to Knot Theory May 2, 2021 7 / 10



Corollary 9.4.4

Corollary 9.4.4

Corollary 9.4.4. If a knot is slice then its signature (and all its
ω-signatures) are 0.

Proof. Recall that the signature of a matrix is is the number of positive
entries minus the number of negative entries on the diagonal, and for a
Seifert matrix V of a knot K , the matrix V + V t is symmetric and its
signature is the signature of knot K , denoted σ(K ). Livingston only
considers the real case, declaring “a proof for the complex signatures [that
is, the ω-signatures] is similar.”

By Theorem 9.4.2, there is an invertible, determinant 1, integer matrix M

such that MVMt is of the form

(
0 B
C D

)
. Also,

(MVMt)t = MV tMt =

(
0 C t

Bt Dt

)
.

() Introduction to Knot Theory May 2, 2021 7 / 10



Corollary 9.4.4

Corollary 9.4.4

Corollary 9.4.4. If a knot is slice then its signature (and all its
ω-signatures) are 0.

Proof. Recall that the signature of a matrix is is the number of positive
entries minus the number of negative entries on the diagonal, and for a
Seifert matrix V of a knot K , the matrix V + V t is symmetric and its
signature is the signature of knot K , denoted σ(K ). Livingston only
considers the real case, declaring “a proof for the complex signatures [that
is, the ω-signatures] is similar.”

By Theorem 9.4.2, there is an invertible, determinant 1, integer matrix M

such that MVMt is of the form

(
0 B
C D

)
. Also,

(MVMt)t = MV tMt =

(
0 C t

Bt Dt

)
.

() Introduction to Knot Theory May 2, 2021 7 / 10



Corollary 9.4.4

Corollary 9.4.4 (continued 1)

Proof (continued). Notice that M(V + V t)Mt is symmetric (since it
equals its transpose), so we have

M(V + V t)Mt =

(
0 S
S t R

)
for some matrices 0, S , and R.

We borrow a result from another source. The determinant of any knot,
det(V + V t), is odd and hence is nonzero (see Theorem 3.1 in “Seifert
Matrix” on Mitchell Faulk’s webpage [accessed 5/2/2021]). So V + V t is

invertible and so M(V + V t)Mt =

(
0 S
S t R

)
is invertible.
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Corollary 9.4.4

Corollary 9.4.4 (continued 2)

Proof (continued). As mentioned in the proof of Corollary 9.4.3, if A22 is
nonsingular then

det(A) = det(A22) det(A11 − A12A
−1
22 A21)

(see Theorem 2.5.C(2) in my online notes for Applied Multivariate
Statistical Analysis [STAT 5730] on Section 2.5. Partitioned Matrices). So

0 6= det(V + V t) = det(M(V + V t)Mt) = det

(
0 S
S t R

)
= det(R) det((0)− SR−1S t) = ±det(R) det(S) det(R−1) det(S t),

and hence det(S) 6= 0, so that matrix S must is invertible (nonsingular).
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Corollary 9.4.4

Corollary 9.4.4 (continued 3)

Proof (continued). So we can use the same row and column operations

to put

(
0 S
S t R

)
into the form

(
0 Ig
Ig R

)
; the row operations can be

performed by a product of elementary matrices, M, and the the
corresponding column operations can be performed by Mt such that

V + V t = M

(
0 Ig
Ig R

)
Mt . By Note 6.3.B, the signature of V + V t and(

0 Ig
Ig R

)
are the same. Similarly, row and column operations can be

used to eliminate the bottom right-hand block to get

(
0 Ig
Ig 0

)
with the

same signature as V + V t by Note 6.3.B. Now this last matrix has
signature 0, and so the slice knot has signature 0, as claimed.
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