Introduction to Knot Theory

Chapter 9. High-Dimensional Knot Theory

9.4. Slice Knots—Proofs of Theorems

Table of contents

(1) Corollary 9.4.3
(2) Corollary 9.4.4

Corollary 9.4.3

Corollary 9.4.3. The Alexander polynomial of a slice knot can be factored as $\pm t^{k} f(t) f\left(t^{-1}\right)$ for some integer polynomial f and integer k.

Proof. The Alexander polynomial is $\operatorname{det}\left(V-t V^{t}\right)$, where V is a Seifert matrix for the knot, by Theorem 6.2.1. By Theorem 9.4.2, there is an invertible, determinant 1 , integer matrix M such that $M V M^{t}$ if of the form
$\left(\begin{array}{ll}0 & B \\ C & D\end{array}\right)$. So the Alexander polynomial is

$$
\begin{aligned}
\operatorname{det}\left(V-t V^{t}\right)= & \operatorname{det}(M) \operatorname{det}\left(V-t V^{t}\right) \operatorname{det}\left(M^{t}\right) \\
& \text { since } \operatorname{det}(M)=\operatorname{det}\left(M^{t}\right)=1 \\
= & \operatorname{det}\left(M\left(V-t V^{t}\right) M^{t}\right) \text { by the Multiplicative } \\
& \text { Property of Determinants } \\
= & \operatorname{det}\left(M V M^{t}-t M V^{t} M^{t}\right) .
\end{aligned}
$$

Corollary 9.4.3

Corollary 9.4.3. The Alexander polynomial of a slice knot can be factored as $\pm t^{k} f(t) f\left(t^{-1}\right)$ for some integer polynomial f and integer k.

Proof. The Alexander polynomial is $\operatorname{det}\left(V-t V^{t}\right)$, where V is a Seifert matrix for the knot, by Theorem 6.2.1. By Theorem 9.4.2, there is an invertible, determinant 1 , integer matrix M such that $M V M^{t}$ if of the form
$\left(\begin{array}{ll}0 & B \\ C & D\end{array}\right)$. So the Alexander polynomial is

$$
\begin{aligned}
\operatorname{det}\left(V-t V^{t}\right)= & \operatorname{det}(M) \operatorname{det}\left(V-t V^{t}\right) \operatorname{det}\left(M^{t}\right) \\
& \text { since } \operatorname{det}(M)=\operatorname{det}\left(M^{t}\right)=1 \\
= & \operatorname{det}\left(M\left(V-t V^{t}\right) M^{t}\right) \text { by the Multiplicative } \\
& \text { Property of Determinants } \\
= & \operatorname{det}\left(M V M^{t}-t M V^{t} M^{t}\right)
\end{aligned}
$$

Corollary 9.4.3 (continued 1)

Proof (continued). Now

$$
M V M^{t}=\left(\begin{array}{cc}
0 & B \\
C & D
\end{array}\right) \text { implies }\left(M V M^{t}\right)^{t}=M V^{t} M^{t}=\left(\begin{array}{cc}
0 & C^{t} \\
B^{t} & D^{t}
\end{array}\right) .
$$

So the Alexander polynomial is

$$
\begin{gathered}
\operatorname{det}\left(M V M^{t}-t M V^{t} M^{t}\right)=\operatorname{det}\left(\left(\begin{array}{cc}
0 & B \\
C & D
\end{array}\right)-t\left(\begin{array}{cc}
0 & C^{t} \\
B^{t} & D^{t}
\end{array}\right)\right) \\
=\operatorname{det}\left(\begin{array}{cc}
0 & B-t C^{t} \\
C-t B^{t} & D-t D^{t}
\end{array}\right) .
\end{gathered}
$$

Now, in general, for partitioned square matrix $A=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$, where A_{11} is square and nonsingular, we have

$$
\operatorname{det}(A)=\operatorname{det}\left(A_{11}\right) \operatorname{det}\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right) \ldots
$$

Corollary 9.4.3 (continued 2)

Proof (continued).

$$
\ldots \operatorname{det}(A)=\operatorname{det}\left(A_{11}\right) \operatorname{det}\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)
$$

(see Theorem 3.4.3 in my online notes for Theory of Matrices [MATH 5090] on Section 3.4. More on Partitioned Square Matrices: The Schur Complement). In fact, we can use a sequence of row interchanges and column interchanges to show that if A_{22} is nonsingular then

$$
\operatorname{det}(A)=\operatorname{det}\left(A_{22}\right) \operatorname{det}\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)
$$

(see Theorem 2.5.C(2) in my online notes for Applied Multivariate Statistical Analysis [STAT 5730] on Section 2.5. Partitioned Matrices).

Corollary 9.4.3 (continued 3)

Corollary 9.4.3. The Alexander polynomial of a slice knot can be factored as $\pm t^{k} f(t) f\left(t^{-1}\right)$ for some integer polynomial f and integer k.

Proof (continued). Notice that $D-t D^{t}$ is nonsingular (or else the Alexander polynomial would be simply 0), so

$$
\begin{aligned}
& \operatorname{det}\left(D-t D^{t}\right) \operatorname{det}\left(0-\left(B-t C^{t}\right)\left(D-t D^{t}\right)^{-1}\left(C-t B^{t}\right)\right) \\
= & \operatorname{det}\left(D-t D^{t}\right) \operatorname{det}\left(-\left(B-t C^{t}\right)\left(D-t D^{t}\right)^{-1}\left(C-t B^{t}\right)\right) \\
= & \left.-\operatorname{det}\left(D-t D^{t}\right) \operatorname{det}\left(B-t C^{t}\right) \operatorname{det}\left(D-t D^{t}\right)^{-1}\right) \operatorname{det}\left(C-t B^{t}\right)
\end{aligned}
$$

$=-\operatorname{det}\left(B-t C^{t}\right) \operatorname{det}\left(C-t B^{t}\right)$ because $\operatorname{det}\left(\left(D-t D^{t}\right)^{-1}\right)=1 / \operatorname{det}\left(D-t D^{t}\right)$

$$
\begin{gathered}
=-\operatorname{det}\left(B-t C^{t}\right) \operatorname{det}\left(\left(C-t B^{t}\right)^{t}\right)=-\operatorname{det}\left(B-t C^{t}\right) \operatorname{det}\left(C^{t}-t B\right) \\
=-\operatorname{det}\left(B-t C^{t}\right) \operatorname{det}\left((-t)\left(B-(t / t) C^{t}\right)\right. \\
= \pm t^{k} \operatorname{det}\left(B-t C^{t}\right) \operatorname{det}\left(B-(1 / t) C^{t}\right)
\end{gathered}
$$

for some k. So we can take $f(t)=\operatorname{det}\left(B-t C^{t}\right)$ and the claim holds.

Corollary 9.4.4

Corollary 9.4.4. If a knot is slice then its signature (and all its ω-signatures) are 0 .

Proof. Recall that the signature of a matrix is is the number of positive entries minus the number of negative entries on the diagonal, and for a Seifert matrix V of a knot K, the matrix $V+V^{t}$ is symmetric and its signature is the signature of knot K, denoted $\sigma(K)$. Livingston only considers the real case, declaring "a proof for the complex signatures [that is, the ω-signatures] is similar."

Corollary 9.4.4

Corollary 9.4.4. If a knot is slice then its signature (and all its ω-signatures) are 0 .

Proof. Recall that the signature of a matrix is is the number of positive entries minus the number of negative entries on the diagonal, and for a Seifert matrix V of a knot K, the matrix $V+V^{t}$ is symmetric and its signature is the signature of knot K, denoted $\sigma(K)$. Livingston only considers the real case, declaring "a proof for the complex signatures [that is, the ω-signatures] is similar."

By Theorem 9.4.2, there is an invertible, determinant 1, integer matrix M such that $M V M^{t}$ is of the form $\left(\begin{array}{ll}0 & B \\ C & D\end{array}\right)$. Also,

Corollary 9.4.4

Corollary 9.4.4. If a knot is slice then its signature (and all its ω-signatures) are 0 .

Proof. Recall that the signature of a matrix is is the number of positive entries minus the number of negative entries on the diagonal, and for a Seifert matrix V of a knot K, the matrix $V+V^{t}$ is symmetric and its signature is the signature of knot K, denoted $\sigma(K)$. Livingston only considers the real case, declaring "a proof for the complex signatures [that is, the ω-signatures] is similar."

By Theorem 9.4.2, there is an invertible, determinant 1, integer matrix M such that $M V M^{t}$ is of the form $\left(\begin{array}{ll}0 & B \\ C & D\end{array}\right)$. Also,

$$
\left(M V M^{t}\right)^{t}=M V^{t} M^{t}=\left(\begin{array}{cc}
0 & C^{t} \\
B^{t} & D^{t}
\end{array}\right) .
$$

Corollary 9.4.4 (continued 1)

Proof (continued). Notice that $M\left(V+V^{t}\right) M^{t}$ is symmetric (since it equals its transpose), so we have

$$
M\left(V+V^{t}\right) M^{t}=\left(\begin{array}{cc}
0 & S \\
S^{t} & R
\end{array}\right)
$$

for some matrices $0, S$, and R.
We borrow a result from another source. The determinant of any knot, $\operatorname{det}\left(V+V^{t}\right)$, is odd and hence is nonzero (see Theorem 3.1 in "Seifert Matrix" on Mitchell Faulk's webpage [accessed 5/2/2021]). So $V+V^{t}$ is invertible and so $M\left(V+V^{t}\right) M^{t}=\left(\begin{array}{cc}0 & S \\ S^{t} & R\end{array}\right)$ is invertible.

Corollary 9.4.4 (continued 1)

Proof (continued). Notice that $M\left(V+V^{t}\right) M^{t}$ is symmetric (since it equals its transpose), so we have

$$
M\left(V+V^{t}\right) M^{t}=\left(\begin{array}{cc}
0 & S \\
S^{t} & R
\end{array}\right)
$$

for some matrices $0, S$, and R.
We borrow a result from another source. The determinant of any knot, $\operatorname{det}\left(V+V^{t}\right)$, is odd and hence is nonzero (see Theorem 3.1 in "Seifert Matrix" on Mitchell Faulk's webpage [accessed $5 / 2 / 2021$]). So $V+V^{t}$ is invertible and so $M\left(V+V^{t}\right) M^{t}=\left(\begin{array}{cc}0 & S \\ S^{t} & R\end{array}\right)$ is invertible.

Corollary 9.4.4 (continued 2)

Proof (continued). As mentioned in the proof of Corollary 9.4.3, if A_{22} is nonsingular then

$$
\operatorname{det}(A)=\operatorname{det}\left(A_{22}\right) \operatorname{det}\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)
$$

(see Theorem 2.5.C(2) in my online notes for Applied Multivariate Statistical Analysis [STAT 5730] on Section 2.5. Partitioned Matrices). So

$$
\begin{aligned}
& 0 \neq \operatorname{det}\left(V+V^{t}\right)=\operatorname{det}\left(M\left(V+V^{t}\right) M^{t}\right)=\operatorname{det}\left(\begin{array}{cc}
0 & S \\
S^{t} & R
\end{array}\right) \\
&=\operatorname{det}(R) \operatorname{det}\left((0)-S R^{-1} S^{t}\right)= \pm \operatorname{det}(R) \operatorname{det}(S) \operatorname{det}\left(R^{-1}\right) \operatorname{det}\left(S^{t}\right),
\end{aligned}
$$

and hence $\operatorname{det}(S) \neq 0$, so that matrix S must is invertible (nonsingular).

Corollary 9.4.4 (continued 3)

Proof (continued). So we can use the same row and column operations to put $\left(\begin{array}{cc}0 & S \\ S^{t} & R\end{array}\right)$ into the form $\left(\begin{array}{cc}0 & I_{g} \\ I_{g} & R\end{array}\right)$; the row operations can be performed by a product of elementary matrices, M, and the the corresponding column operations can be performed by M^{t} such that $V+V^{t}=M\left(\begin{array}{cc}0 & I_{g} \\ I_{g} & R\end{array}\right) M^{t}$. By Note 6.3.B, the signature of $V+V^{t}$ and $\left(\begin{array}{cc}0 & I_{g} \\ I_{g} & R\end{array}\right)$ are the same. Similarly, row and column operations can be used to eliminate the bottom right-hand block to get $\left(\begin{array}{cc}0 & I_{g} \\ I_{g} & 0\end{array}\right)$ with the same signature as $V+V^{t}$ by Note 6.3.B. Now this last matrix has signature 0 , and so the slice knot has signature 0 , as claimed.

