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Section 10.1. The Conway Polynomial of a Knot

Note. We define the Conway polynomial of a knot (or link) K, ∇K(z), in terms of

the Alexander polynomial. Based on the three types of “crossings” L+, L−, and LS

introduced at the beginning of this chapter, we state a formula (the “skein relation”)

involving ∇L+
, ∇L+

, and ∇LS
which we use to find the Conway polynomial for

several knots and links.

Definition. An Alexander polynomial of a knot K is normalized if AK(t) =

AK(t−1) and A(1) = 1. A normalized Alexander polynomial can be written in

terms of z = t1/2 − t−1/2 where only positive powers of z appear. We then denote

this representation as∇K(z) and it is called the Conway polynomial (or the potential

function) of K. This is also sometimes called the Alexander-Conway polynomial.

Example 10.1.A. Notice that an Alexander polynomial for the trefoil knot is

t2 − t + 1 (see Example 3.5.1 and Appendix 2). If we divide this by t then we

get t − 1 + t−1 and in this polynomial we have (t − 1 + t−1)|t=1 = 1 so this is

the normalized version of the Alexander polynomial of the trefoil knot. Notice that

with z = t1/2−t−1/2, we have z2+1 = (t1/2−t1/2)2+1 = t−2+t−1+1 = t−1+t1/2,

so that the Conway polynomial of the trefoil knot is ∇K(z) = z2 + 1.

Example 10.1.B. In Example 3.5.2, it is shown that an Alexander polynomial

of the knot K = 41 is t2 − 3t + 1. Dividing by −t gives −t + 3 − t−1 and in

this polynomial (−t + 3 − t−1)|t=1 = 1 so this is the normalized version of the
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Alexander polynomial for K = 41. Notice that with z = t1/2 − t−1/2, we have

−z2 + 1 = −(t1/2 − t−1/2)2 + 1 = −(t − 2 + t−1) + 1 = −t + 3 − t−1, so that the

Conway polynomial of the knot K = 41 is ∇K(z) = −z2 + 1.

Note. In Exercise 10.1.2 it is to be shown that every Alexander polynomial of

any knot or link can be normalized. In Corollary 6.2.2 is shown that for knot K,

normalized Alexander polynomial AK(t) =
∑n

i=0 ait
i where ai = an−i, so that the

coefficients are symmetric. In Exercise 10.1.A it is to be shown that every such

symmetric polynomial of t can written as a polynomial function z = t1/2 − t−1/2.

Note. In Exercise 10.1.2, it is argued that Alexander polynomials for links also

have a type of symmetry. The proof is based on Seifert matrices and the genus of

the Seifert surface. We get the polynomial in the variable t1/2. Similar to Theorem

3.5.6, the Alexander polynomial for a link is not unique but different diagrams

produce polynomials that differ by multiples of ±(t1/2)k for some k ∈ N.

Note 10.1.A. Conway proved that the Conway polynomials of links L+, L−, and

LS (that is, Conway polynomials for diagrams which differ at one crossing with a

right-handed crossing for L+, a left-handed crossing for L−, and a crossing that has

been smoothed for LS) satisfy the relationship ∇L+
(z)−∇L−(z) = −z∇LS

(z). This

is called the “skein relation” (see the Wikipedia Alexander polynomial webpage;

accessed 2/5/2021). It was introduced in John H. Conway, “An enumeration of

knots and links,” in Computational Problems in Abstract Algebra, J. Leech (ed.),

pp. 329-358, Pergamon (1969).

https://en.wikipedia.org/wiki/Alexander_polynomial#Alexander%E2%80%93Conway_polynomial
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Example 10.1.C. Since the Alexander polynomial of the unknot U is AU(t) = 1,

then the Conway polynomial of the unknot is also ∇U(t) = 1. In Figure 10.2, we

have unknots (left and center) with a right-handed crossing (left, L+), a left-handed

crossing (center, L−), and the same orientation with a smoothing (right, LS; we

denote this “unlink of two components” as U2). So we can use Conway’s formula in

Note 10.1.A, ∇L+
(z)−∇L−(z) = −z∇LS

(z) to conclude that −z∇LS
(z) = 1−1 = 0

or ∇LS
(z) = ∇U2

(z) = 0.

Example 10.1.D. In Figure 10.3, we have the (2, 2)-torus link, denoted T2, on the

left. This is L+ with respect to the uppermost crossing. The center diagram is L−

with respect to the uppermost crossing and is the unlink of two components U2.

The right diagram is LS with respect to the uppermost crossing and is the unknot

U . By Note 10.1.A, ∇L+
(z)−∇L−(z) = −z∇LS

(z) or ∇T2
(z)−∇U2

(z) = −z∇U(z).

Since ∇U(z) = 1 and ∇U2
(z) = 0 (by the previous Note), then ∇T2

(z) = ∇U2
(z)−

z∇U(z) = 0− z(1) = −z.
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Note. In Example 10.1.A, we computed the Conway polynomial of the trefoil knot

K using the Alexander polynomial and we found that ∇K(z) = z2 + 1. In Figure

10.4, the trefoil knot is given on the left where the upper crossing is L+, the unknot

U is given in the center where the upper crossing is L−, and the (2, 2)-torus link

T2 where the upper crossing has been smoothed (“LS”) on the right. We know

∇U(z) = 1 and ∇T2
(z) = z, the again using ∇L+

(z)−∇L−(z) = −z∇LS
(z), we have

∇K(z) = ∇U(z)− z∇T2
(z) = 1− z(−z) = z2 + 1, as before.

Note. As suggested by the previous examples, we could use Conway’s formula

∇L+
(z) − ∇L−(z) = −z∇LS

(z) to build up a catalog of knots and links for which

we know the Conway polynomial. This is why Livingston refers the for formula as

“recursive.” The exercises in this section have you compute the Conway polynomial

for several knots and links (see Exercises 10.1.3, 10.1.4, and 10.1.5). The next

theorem offers an additional computational approach for Conway polynomials of

connected sums, mirror images, reverses of knots.

Theorem 10.1.1.

(a) For knots K1 and K2, ∇K1#K2
(z) = ∇K1

(z)∇K2
(z).

(b) For any knot K, ∇K(z) = ∇Km(z) = ∇Kr(z).
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Note. In Figure 10.5 we have a sequence of knot diagrams.

Notice that the four knots/links at the bottom are (1) a trefoil knot and an unknot

for which the Conway polynomial is 0 (we take this as given), (2) the trefoil knot

for which the Conway polynomial is z2 +1 by Example 10.1.A , (3) the trefoil knot

again, (4) the (2, 2)-torus link T2 with the orientation of one component reversed (so
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that the Conway polynomial is−∇T2
(z) = −(−z) = z by Exercise 10.1.D). Working

from the bottom, we have by Conway’s formula of Note 10.1.A (∇L+
(z)−∇L−(z) =

−z∇LS
(z)) that:

(0)−∇K3
(z) = −z(z2 + 1) or ∇K3

(z) = z3 + z,

(z2 + 1)−∇K4
(z) = −z(z) or ∇K4

(z) = 2z2 + 1,

∇K2
− (z3 + z) = −z(2z2 + 1) or ∇K2

= −z3, and

∇K(z)− (z4 + 3z2 + 1)(z2 + 1) = −z(−z3) or ∇K(z) = (z4 + 3z2 + 1)(z2 + 1)− z4

= (z6 + 3z4 + z2 + z4 + 3z2 + 1) + z4 = z6 + 5z4 + 4z2 + 1.

That is, ∇K(z) = z6 + 5z4 + 4z2 + 1. Notice that K1 is the connected sum of the

(2, 5)-torus knot and the trefoil knot. By Exercise 10.1.4 it is to be shown that

the Conway polynomial of the (2, 5)-torus knot is z4 + 3z2 + 1 so and by Example

10.1.A the Conway polynomial of the trefoil knot is z2 +1, so by Theorem 10.1.1(a)

∇K1
= (z4 +3z2 +1)(z2 +1). (Notice the typographical error in Livingston’s Figure

10.5 where the Conway polynomial of K1 is erroneously given as (z4+3z+1)(z2+1);

also notice that Livingston’s Figure 10.5 has a “∆” in several places where it should

have a “∇” [the errors are corrected in these notes].)
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