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Section 10.3. Kauffman’s Bracket Polynomial

Note. In this section we define two types of smoothings of crossings in a link
diagram. Using these two choices of smoothings, we define a function (D). This
function is not invariant under Reidemeister moves, so we define the Kauffman
polynomial F[K] in terms of (D). We discuss the Kauffman polynomial and give

examples of its computation.

Note. The Kauffman polynmial and his bracket notation was introduced in: Louis
H. Kaufmann, State Models and the Jones Polynomial, Topology, 26(3), 395-407
(1987). Awailable online through Science Direct (accessed 4/11/2021).

Definition. In an (unoriented) link diagram D, crossings can be rotated to appear
as in Figure 10.9(a). This crossing can then be smoothed in the two different ways
given in Figure 10.9(b), called a smoothing of type A (Figure 10.9(b) left) and a
smoothing of type B (Figure 10.9(b) right). A state S is a choice of smoothings for

each of the crossings in the diagram.
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(a) Figure 10.9


https://www.sciencedirect.com/science/article/pii/0040938387900097
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Note. If a diagram has n crossings then there are 2" possible states. For a given
state with a crossings of type A and b crossings of type B, define (D|S) = t*.

Now define
(D) = (DIS)(~t* =¥,
where the sum is taken over all 2" states, and |S| is the number of circles that result

after all the smoothings of the given state are performed on the diagram (see the

proof of Theorem 4.3.7 for the idea of a “circle”).

Example. Consider the knot of Figure 10.10. Since it has 3 crossings, then it has
23 = 8 states.

Figure 10.10

In the 8 states, we have 1 for which a = 3 and b = 0, 3 for which a =2 and b = 1,
3 for which @ = 1 and b = 2, and 1 for which @ = 0 and b = 3. The number |S| of

circles in the resulting diagrams is 2, 1, 2, and 3, respectively (see below).
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We then have

(D) = Z(D\S)(—t‘Q . t2)|S|—1 _ Zta—b(_t—Q . 752)\S|—1
= (=72 — Y@= 1 (3)t@ =W (=2 —¢2)(=1 (3= (=2 — 2)D~L
()OO (2 YO = 32 ) 3+ 3T (=t =) (72— 1)
= =3t =3t =Bttt 24t = —t P43t =3t =3t t 2 4t
S A A

(Notice that this differs from Livingston’s result by two negative signs.)

Note. Recall the three Reidemeister moves from Figure 3.1:
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Livingston claims that the polynomial (D) can be shown to be invariant under
Reidemeister moves 2 and 3. However, it can change under Reidemeister move 1,
as can be seen by applying it to a diagram of the unknot. So polynomial (D) is
not a knot invariant. We can use (D) to define a new polynomial which is a knot

invariant (in particular, it is unchanged by Reidemeister move 1).
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Definition. For a given link diagram D, orient each component. Let w denote
the number of right-handed crossings minus the number of left-handed crossings
(see Section 3.5. The Alexander Polynomial, Note 3.5.A for the definition of the
handedness of crossings). The Kauffman polynomial F[K] is (—t)73%(D).

Note. For the knot of Figure 10.10 above, we saw that (D) = —t7> — 3 + ¢ 7

and we have w = 3, so the Kaufman polynomial is
(=) (D) = (=) (=t> =t 3+t ) =t 712 710,

(Notice that this agrees with Livingston.) Livingston claims that the exponents of
the Kauffman polynomial are divisible by 4. Kauffman proved that the polynomial
(in ¢ and t~1) F[K](t"/%) is in the Jones polynomial. Notice that for the knot
of Figure 10.10, F[K|(t~V4) = (¢t~ + 72 — t710)] 0 = (VY4 + (7412 =
(t~1/4)716 = ¢ 443 —* which is in fact the Jones polynomial of the trefoil (the knot
of Figure 10.10 is actually just the trefoil knot 3;).
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https://faculty.etsu.edu/gardnerr/Knot-Theory/Notes-Livingston/Livingston-Knot-3-5.pdf

