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Section 10.3. Kauffman’s Bracket Polynomial

Note. In this section we define two types of smoothings of crossings in a link

diagram. Using these two choices of smoothings, we define a function 〈D〉. This

function is not invariant under Reidemeister moves, so we define the Kauffman

polynomial F [K] in terms of 〈D〉. We discuss the Kauffman polynomial and give

examples of its computation.

Note. The Kauffman polynmial and his bracket notation was introduced in: Louis

H. Kaufmann, State Models and the Jones Polynomial, Topology, 26(3), 395–407

(1987). Available online through Science Direct (accessed 4/11/2021).

Definition. In an (unoriented) link diagram D, crossings can be rotated to appear

as in Figure 10.9(a). This crossing can then be smoothed in the two different ways

given in Figure 10.9(b), called a smoothing of type A (Figure 10.9(b) left) and a

smoothing of type B (Figure 10.9(b) right). A state S is a choice of smoothings for

each of the crossings in the diagram.

https://www.sciencedirect.com/science/article/pii/0040938387900097
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Note. If a diagram has n crossings then there are 2n possible states. For a given

state with a crossings of type A and b crossings of type B, define 〈D|S〉 = ta−b.

Now define

〈D〉 =
∑

〈D|S〉(−t−2 − t2)|S|−1,

where the sum is taken over all 2n states, and |S| is the number of circles that result

after all the smoothings of the given state are performed on the diagram (see the

proof of Theorem 4.3.7 for the idea of a “circle”).

Example. Consider the knot of Figure 10.10. Since it has 3 crossings, then it has

23 = 8 states.

In the 8 states, we have 1 for which a = 3 and b = 0, 3 for which a = 2 and b = 1,

3 for which a = 1 and b = 2, and 1 for which a = 0 and b = 3. The number |S| of

circles in the resulting diagrams is 2, 1, 2, and 3, respectively (see below).
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We then have

〈D〉 =
∑

〈D|S〉(−t−2 − t2)|S|−1 =
∑

ta−b(−t−2 − t2)|S|−1

= (1)t(3)−(0)(−t−2 − t2)(2)−1 + (3)t(2)−(1)(−t−2 − t2)(1)−1 + (3)t(1)−(2)(−t−2 − t2)(2)−1

+(1)t(0)−(3)(−t−2 − t2)(3)−1 = t3(−t−2 − t2) + 3t + 3t−1(−t−2 − t2) + t−3(−t−2 − t2)2

= −t− t5 +3t−3t−3−3t+ t−3(t−4 +2+ t4) = −t− t5 +3t−3t−3−3t+ t−7 +2t−3 + t

= −t5 − t−3 + t−7.

(Notice that this differs from Livingston’s result by two negative signs.)

Note. Recall the three Reidemeister moves from Figure 3.1:

Livingston claims that the polynomial 〈D〉 can be shown to be invariant under

Reidemeister moves 2 and 3. However, it can change under Reidemeister move 1,

as can be seen by applying it to a diagram of the unknot. So polynomial 〈D〉 is

not a knot invariant. We can use 〈D〉 to define a new polynomial which is a knot

invariant (in particular, it is unchanged by Reidemeister move 1).
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Definition. For a given link diagram D, orient each component. Let w denote

the number of right-handed crossings minus the number of left-handed crossings

(see Section 3.5. The Alexander Polynomial, Note 3.5.A for the definition of the

handedness of crossings). The Kauffman polynomial F [K] is (−t)−3w〈D〉.

Note. For the knot of Figure 10.10 above, we saw that 〈D〉 = −t−5 − t−3 + t−7

and we have w = 3, so the Kaufman polynomial is

(−t)−3w〈D〉 = (−t)−9(−t5 − t−3 + t−7) = t−4 + t−12 − t−16.

(Notice that this agrees with Livingston.) Livingston claims that the exponents of

the Kauffman polynomial are divisible by 4. Kauffman proved that the polynomial

(in t and t−1) F [K](t−1/4) is in the Jones polynomial. Notice that for the knot

of Figure 10.10, F [K](t−1/4) = (t−4 + t−12 − t−16)|t−1/4 = (t−1/4)−4 + (t−1/4)−12 −

(t−1/4)−16 = t+ t3− t4, which is in fact the Jones polynomial of the trefoil (the knot

of Figure 10.10 is actually just the trefoil knot 31).
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https://faculty.etsu.edu/gardnerr/Knot-Theory/Notes-Livingston/Livingston-Knot-3-5.pdf

