Section 10.3. Kauffman's Bracket Polynomial

Note. In this section we define two types of smoothings of crossings in a link diagram. Using these two choices of smoothings, we define a function $\langle D\rangle$. This function is not invariant under Reidemeister moves, so we define the Kauffman polynomial $F[K]$ in terms of $\langle D\rangle$. We discuss the Kauffman polynomial and give examples of its computation.

Note. The Kauffman polynmial and his bracket notation was introduced in: Louis H. Kaufmann, State Models and the Jones Polynomial, Topology, 26(3), 395-407 (1987). Available online through Science Direct (accessed 4/11/2021).

Definition. In an (unoriented) link diagram D, crossings can be rotated to appear as in Figure 10.9(a). This crossing can then be smoothed in the two different ways given in Figure 10.9(b), called a smoothing of type A (Figure 10.9(b) left) and a smoothing of type B (Figure 10.9(b) right). A state S is a choice of smoothings for each of the crossings in the diagram.

(a)

Figure 10.9

(b)

Note. If a diagram has n crossings then there are 2^{n} possible states. For a given state with a crossings of type A and b crossings of type B, define $\langle D \mid S\rangle=t^{a-b}$. Now define

$$
\langle D\rangle=\sum\langle D \mid S\rangle\left(-t^{-2}-t^{2}\right)^{|S|-1}
$$

where the sum is taken over all 2^{n} states, and $|S|$ is the number of circles that result after all the smoothings of the given state are performed on the diagram (see the proof of Theorem 4.3.7 for the idea of a "circle").

Example. Consider the knot of Figure 10.10. Since it has 3 crossings, then it has $2^{3}=8$ states .

Figure 10.10

In the 8 states, we have 1 for which $a=3$ and $b=0,3$ for which $a=2$ and $b=1$, 3 for which $a=1$ and $b=2$, and 1 for which $a=0$ and $b=3$. The number $|S|$ of circles in the resulting diagrams is $2,1,2$, and 3 , respectively (see below).

$a=3, b=0,|S|=2$

$a=2, b=1,|S|=1$

$a=0, b=3,|S|=3$

We then have

$$
\begin{gathered}
\langle D\rangle=\sum\langle D \mid S\rangle\left(-t^{-2}-t^{2}\right)^{|S|-1}=\sum t^{a-b}\left(-t^{-2}-t^{2}\right)^{|S|-1} \\
=(1) t^{(3)-(0)}\left(-t^{-2}-t^{2}\right)^{(2)-1}+(3) t^{(2)-(1)}\left(-t^{-2}-t^{2}\right)^{(1)-1}+(3) t^{(1)-(2)}\left(-t^{-2}-t^{2}\right)^{(2)-1} \\
+(1) t^{(0)-(3)}\left(-t^{-2}-t^{2}\right)^{(3)-1}=t^{3}\left(-t^{-2}-t^{2}\right)+3 t+3 t^{-1}\left(-t^{-2}-t^{2}\right)+t^{-3}\left(-t^{-2}-t^{2}\right)^{2} \\
=-t-t^{5}+3 t-3 t^{-3}-3 t+t^{-3}\left(t^{-4}+2+t^{4}\right)=-t-t^{5}+3 t-3 t^{-3}-3 t+t^{-7}+2 t^{-3}+t \\
=-t^{5}-t^{-3}+t^{-7} .
\end{gathered}
$$

(Notice that this differs from Livingston's result by two negative signs.)

Note. Recall the three Reidemeister moves from Figure 3.1:

Livingston claims that the polynomial $\langle D\rangle$ can be shown to be invariant under Reidemeister moves 2 and 3. However, it can change under Reidemeister move 1, as can be seen by applying it to a diagram of the unknot. So polynomial $\langle D\rangle$ is not a knot invariant. We can use $\langle D\rangle$ to define a new polynomial which is a knot invariant (in particular, it is unchanged by Reidemeister move 1).

Definition. For a given link diagram D, orient each component. Let w denote the number of right-handed crossings minus the number of left-handed crossings (see Section 3.5. The Alexander Polynomial, Note 3.5.A for the definition of the handedness of crossings). The Kauffman polynomial $F[K]$ is $(-t)^{-3 w}\langle D\rangle$.

Note. For the knot of Figure 10.10 above, we saw that $\langle D\rangle=-t^{-5}-t^{-3}+t^{-7}$ and we have $w=3$, so the Kaufman polynomial is

$$
(-t)^{-3 w}\langle D\rangle=(-t)^{-9}\left(-t^{5}-t^{-3}+t^{-7}\right)=t^{-4}+t^{-12}-t^{-16} .
$$

(Notice that this agrees with Livingston.) Livingston claims that the exponents of the Kauffman polynomial are divisible by 4. Kauffman proved that the polynomial (in t and t^{-1}) $F[K]\left(t^{-1 / 4}\right)$ is in the Jones polynomial. Notice that for the knot of Figure 10.10, $F[K]\left(t^{-1 / 4}\right)=\left.\left(t^{-4}+t^{-12}-t^{-16}\right)\right|_{t^{-1 / 4}}=\left(t^{-1 / 4}\right)^{-4}+\left(t^{-1 / 4}\right)^{-12}-$ $\left(t^{-1 / 4}\right)^{-16}=t+t^{3}-t^{4}$, which is in fact the Jones polynomial of the trefoil (the knot of Figure 10.10 is actually just the trefoil knot 3_{1}).

